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The first detection of gravitational waves, occurred in the centennial year of General Relativity, was not 

only a spectacular confirmation of Einstein's Theory, but also the occasion of seeing the differential 

equations encoded in the Ricci tensor at work. Indeed this is what is ultimately encoded in the the signal 

registered by the two Ligos.  Thus, in this exciting year 2016, while we wait for the new data that the three 

interferometers will provide us with, just as they start again on duty this fall, it is most appropriate to 

review the interesting conceptual path that, crossing through the entire history of XIX century 

Mathematics, led to the merging of Physics into Geometry finally operated by Einstein at the dawn of the 

XX century. Within the framework of this  tale, it is not only appropriate but long due and obligatory  to 

recall and commemorate the extraordinary role played by three great Italians, namely Ricci Curbastro, 

Bianchi and Levi Civita. Of the last and youngest one among these three, Levi Civita, Einstein used to say 

that, apart from spaghetti, he was the most important thing that existed in Italy.  

                         

Indeed in order to arrive at the conception of Space-Time that underlies Einstein's Theory, three conceptual 

revolutions were needed: 

1. Euclidian geometry, that had been considered by Kant an apriori truth at the fundament of all 

sensorial experience, had to be dethronized, making it possible to consider non-euclidian signatures 

of what was later named a metric. 

2. Cartesian coordinates had to be detronized, in favor of intrinsic coordinates able to describe 

manifolds of arbitrary curvature. A new tensor calculus was needed to treat  new mathematical 

entities  that soon were turned by Einstein into  physical ones. 

3. Group Theory ought to be developed in order to formalize the notion of general coordinate 

transformations and to understand the symmetries of various geometries.  



The first revolution was initiaded by the Russian mathematician Nicolai 

Ivanovich Lobachevsky (1793-1856) who introduced the first model of a non-

Euclidian geometry in 1826. It was continued by Eugenio Beltrami who, in 1868, 

provided explicit representations of Lobachevsky geometry on curved surfaces 

and by Poincaré, who encoded such a geometry into a two-manifold with a 

specific metric.  The second and the third revolutions were respectively initiated 

by Gauss in 1828 and by Galois in 1832. The complicated conceptual history that 

followed these events and culminated in the founding, by Ricci, Levi-Civita and 

Bianchi, of a new mathematical discipline, namely Differential Geometry, is the 

tale told in the next lines.  We begin by reporting the words that open  Levi 

Civita and  Ricci's paper of 1899. They are particularly inspiring in view of what 

was to follow: 

M. Poincaré a écrit que dans les Sciences 

mathématiques une bonne notation a la même 

importance philosophique qu’une bonne 

classification dans les Sciences naturelles. 

Évidemment, et même avec plus de raison, on peut 

en dire autant des méthodes, car c’est bien de leur 

choix que dépend la possibilité de forcer (pour nous 

servir encore des paroles de l’illustre géomètre 

français) une multitude de 

faits sans aucun lien 

apparent à se grouper 

suivant leurs affinités 

naturelles. (Ricci & Levi-

Civita) 
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Gauss introduces intrinsic 

geometry and curvilinear 

coordinates  in 1828 

 

 

The first appearance of a metric 

is in the 1828 essay of Gauss on 

curved surfaces. Written in Latin, 

the Disquisitiones Generales circa 

superficies curvas contains the major revolutionary step forward that was necessary to overcome the 

precincts of Euclidian geometry and found a new differential science of spaces  able to treat both flat and 

curved ones. Up to Gauss' paper, Geometry was either formulated 

abstractly in terms of Euclidian axioms or analytically in terms of 

Cartesian coordinates. By Geometry it was meant the study of global 

properties of plane figures like triangles, squares and other polygons, 

or solids like the regular polyhedra. All such objects were conceived as 

immersed in an external space where it was implicitly assumed that 

one could always define the absolute distance d(A,B) between any two 

given points A and B. Distance is the basic brick of the whole Euclidian building and it is calculated as the 

length of the segment with end-points in A and B, lying on the unique straight line which goes through any 

such pair of distinct points. Curved surfaces were obviously known before Gauss, yet their shape and 

properties were conceived only through 

their immersion in three-dimensional 

space, considered unique and absolute, as 

pretended by Immanuel Kant who 

promoted Euclidian geometry to an a priori 

truth lying at  the basis of any sensorial 

experience. Gauss revolutionary starting 

point was that of reformulating the geometrical study of surfaces from an intrinsic rather than extrinsic 

viewpoint. He wondered how a little being, confined to live on the surface, might have perceived the 

geometry of his world. Rather than viewing the global shape of the surface M, inaccessible to his 

observations, the little creature would have explored its local properties in the vicinity of a point p of M. In 

order to study curved surfaces in these terms, Gauss understood that it was necessary to abandon 

Cartesian coordinates as a system of point identification. Gauss was the first to grasp the notion of 

curvilinear coordinates and invented Gaussian coordinates. A very simple but revolutionary idea. By 

introducing curvilinear Gaussian coordinates, the King of Mathematicians freed the study of surfaces from 

their immersion in the external Euclidian space but he immediately had to cope with a new fundamental 

problem. Having abolished from the list of one's mathematical instruments the straight line segments that 

join any two points A and B of the surface M, how can we calculate their distance? The great intuitions of 

Gauss were the tangent plane  and the linear element ds2,namely the metric. The problem addressed by 

Gauss was to give an answer to the following question: Can we define the length of any curve departing 

 
 

Figura 1  Carl Friedrich Gauss  (1777 -- 
1855).  Gauss, the King of 
Mathematicians, was  Professor at the 
University of  Gottingen  for many 
decades up to the very end of his long 
life. His contributions  to all fields of 
Mathematics were enormous and most 
profound. 



from p and arriving at q, both in  M, in terms of data completely 

intrinsic to the surface. Gauss' answer was positive and based on the 

change of perspective at the basis of the new differential geometry. Let 

us reformulate the initial question whether we might define the 

absolute distance between two arbitrary points A,B of the surface M, 

adding the extra condition that A and B should be only infinitesimally 

apart from each other. Analytically this means that if the Gaussian 

coordinates of A are (u,v), then those of B should be (u+du,v+dv) where 

du e dv  are infinitesimal. Gauss crucial observation is that a very small 

portion of the surface M, around any point p, can be approximated by a 

portion of the tangent plane to the surface at the point p.  The square 

length of the segment joining A and B, named in modern notation ds2,  

was expressed by Gauss as a quadratic form in the differentials (du, dv), 

namely :   

                  ds2 = F(u,v) du2  +  G(u,v) dv2  + H(u,v) dudv.   

Written in 1828 this formula provided the first example of a Riemannian metric, although Riemann was at 

that time only a two-year old child. 

Bernhard Riemann introduces n-dimensional metric manifolds in 1854 

The name of Riemann is associated in Mathematics with so many different and fundamental 

objects that the contemporary student is instinctively led to think about the scientific production of this 

giant of human thought as composed by a countless number of papers, books and contributions. Actually 

the entire corpus of Riemann's works is constituted  only by 225 pages distributed over 11 articles 

published during the life-time of their author to which one has to add the 102 pages of the 4 posthumous 

publications.  

Among the latter there are the 16 pages of the Ueber die Hypothesen, welche der Geometrie zu Grunde 

liegen which, in 1854, was debated by the candidate in front of the Göttingen Faculty of Philosophy as 

Habilitationsschrift. The habilitation to teach courses was the traditional first  step in the academic career 

foreseen by most European universities, all over their very long history. In XIX  century Germany the 

procedure to access habilitation consisted of the writing of a dissertation on a topic chosen by the Faculty 

from a list of three proposed by the candidate. Typical time allowed for the preparation of such a 

dissertation was a couple of months and in the case of Riemann it amounted to exactly seven weeks. 

Obsessed the whole of his short life by extreme poverty and by a very poor health, that eventually led him 

to death from pulmonary consumption at the quite young age of thirty-nine, the shy and meek Bernhard 

Riemann, who was nonetheless quite conscious of his own talents, had already profoundly impressed 

Gauss with his diploma thesis. Written in 1851 and entitled Grundlagen fur eine allgemeine Theorie der 

Functionen einer Veränderlichen complexen Grösse which can be translated as Principles of a General 

Theory of the Functions of one complex variable, Riemann's thesis was completely new and contained all 

the essentials of the theory of analytic functions as it is taught up to the present day in most universities of 

the world. Quite openly Gauss told his young student that for many years he had cheered the plan of 

writing a similar essay on that very topics, yet now he would refrain from doing so since everything relevant 

to that province of thought had already been said by Riemann. 

Bernhard Riemann (1826 -- 1866). 
Riemann’s dissertation was published 
posthumous by Dedekind on the 
ABHANDLUNGEN DER KÖNIGLICHEN 
GESELLSCHAFT DER WISSENSCHAFTEN 
ZU GÖTTINGEN 



When three years later Riemann presented 

to the Göttingen Faculty his three proposals for the 

theme of his own Habilitationsschrift, two choices 

were in fields where the young mathematician felt 

quite confident, while the third, with some 

hesitation, was just added  in order to complete 

the triplet and with the secret hope that it would 

be immediately discarded by the academic 

committee as something too philosophical and ill 

defined. The third proposed title was Grundlagen 

der Geometrie, namely the Principles of Geometry. 

Remembering the talents of the young Herr 

Riemann, Gauss was fascinated by the idea of 

giving him precisely such a challenging subject as 

the Foundations of Geometry to see what he might 

come up with it. The King of Mathematicians 

persuaded the Faculty to make such a choice and 

the poor Bernhard was dismayed by the news. He 

wrote to his father, a poor Lutheran minister, 

about his concerns on this matter but he also 

expressed him his confidence that he would not 

come too late and that his merits as an independent researcher would be appreciated.  

Riemann had accepted the challenge and in seven weeks he produced such a masterpiece of 

Mathematics and Philosophy as the Ueber die Hypothesen, welche der Geometrie zu Grunde liegen, that is 

About the Hypotheses lying at the Foundations of Geometry. With an unparalleled clarity of mind, Riemann 

began his essay with a profound criticism of the traditional approach to Geometry, refusing the Kantian 

dogma that this latter is an  a-priori datum and rather inclining to the idea that which geometry is the 

actual one of Physical Space should be determined from experience. He said: It is known that geometry 

assumes, as things given, both the notion of space and the first principles of constructions in space.  She 

gives definitions of them which are merely nominal, while the true determinations appear in the form of 

axioms.  The relation of these assumptions remains consequently in darkness; we neither perceive whether 

and how far their connection is necessary, nor a priori, whether it is possible. From Euclid to Legendre (to 

name the most famous of modern reforming geometers) this darkness was cleared up neither by 

mathematicians nor by such philosophers as concerned themselves with it1. 

After stating this two-thousand year old stalemate, Riemann proceeded to diagnose its cause. 

Explicitly he said: The reason of this is doubtless that the general notion of multiply extended magnitudes 

(in which space-magnitudes are included) remained entirely unworked.  I have in the first place, therefore, 

set myself the task of constructing the notion of a multiply extended magnitude out of general notions of 

magnitude. It will follow from this that a multiply extended magnitude is capable of different measure-

relations, and consequently that space is only a particular case of a triply extended magnitude. In 

contemporary language the multiply extended magnitudes2 were simply the manifolds and the measure 

                                                           
1
The translation of Riemann's essay from German into English was done by William Clifford. 

2
In the original German text of Riemann these were named mehrfachausgedehnter Grossen.  In modern scientific 

German the notion of manifolds is referred to as mannigfaltigkeiten. 



relations are just the metrics introduced for the first time by Gauss. Following the new road opened by 

Gauss with the Disquisitiones, Riemann introduced n-extended manifolds whose points are labeled by n 

rather than two curvilinear coordinates xi and introduced the line element as a generic symmetric quadratic 

form in the differentials of these coordinates   

                                                                  ds2 = gij(x) dxidxj.  

The coefficients of this quadratic form gij(x) were later known as the Riemannian metric tensor. 

Riemann grasped the main point, namely that the geometry of manifolds is encoded in the possible metric 

tensors or measure relations, as he called them, and made the following bold statement: Hence flows as a 

necessary consequence that the propositions of geometry cannot be derived from general notions of 

magnitude, but that the properties which distinguish Space from other conceivable triply extended 

magnitudes are only to be deduced from experience.  Thus arises the problem, to discover the simplest 

matters of fact from which the measure-relations of space may be determined; a problem which from the 

nature of the case is not completely determinate, since there may be several systems of matters of fact 

which suffice to determine the measure-relations of space. 

In other words, the young genius was aware that the same manifold could support quite different 

metrics and thought that this applied in particular to Space, i.e. to the 3-dimensional physical world of our 

sensorial experience. He posed himself the question which should be the metric of Space  and came to the 

conclusion that such a question could only be answered through experiment. This amounted to say that the 

geometry of the world is a matter of Physics and not of a priori Philosophy or Mathematics. Such a 

sentence of Riemann must have influenced Einstein quite deeply. Indeed the final outcome of Einstein 

Theory of Relativity is that the geometry of space-time is dynamically determined by its matter content 

through Einstein field equations. In considering such a question as what is the preferred metric to be 

selected for a given manifold, Riemann formulated the basic problem of invariants. The matter of facts3 to 

which he alluded are the intrinsic properties encoded in a given metric tensor namely its invariants and he 

formulated the problem of determining, for instance, the minimal complete number of invariants able  to 

select Euclidian geometry. In his quest for these invariants he came to the notion of the Riemann curvature 

tensor that he outlined in his very dissertation.  As we already recalled, Riemann died young and had no 

time to develop the new theory of differential geometry that he had founded. Yet he had the time to come 

to Italy and, through his contact with the Scuola Normale di Pisa and the research group of Enrico Betti,  

whom he deeply admired, to plant the seeds of the absolute differential calculus in the Italian Peninsula 

where, later, they were strongly developed by Gregorio Ricci Curbastro and  Tullio Levi Civita. 

The Absolute Differential Calculus of Ricci Curbastro and Levi Civita (1899) 

The primary concern of the new differential geometry, founded by 

Riemann as a generalization of Gauss work on surfaces, was that of 

defining the length of curves on arbitrary manifolds. This leads to the 

notion of the metric. Once the metric is established, a natural way arises 

of transporting vectors along any given curve. We can say that a vector is 

parallel-transported along an arc of curve if the angle between the 

transported vector and the tangent vector to the curve remains constant 

throughout the entire transport. The metric connection is that 

infinitesimal displacement of a vector X along the direction singled out by 

another  one Y which is so defined as to fulfill the property of preserving 

                                                           
3
EinfachstenThatsachenin the original German text. 

Elwin Bruno Christoffel   (1929 – 1918) 



angles. It was first conceived by Christoffel. Elwin Bruno Christoffel was born in 1829 in Montjoie, near 

Aachen, that was renamed Monschau in 1918. After attending secondary schools in Cologne, he enrolled at 

the University of Berlin, where he had such teachers as Eisenstein and Dirichlet. Particularly the latter is 

duly considered his master. Christoffel's doctor dissertation, dealing with the motion of electricity in 

homogeneous media was defended in 1856, just two years after Riemann's presentation of the Ueber die 

Hypothesen. Having spent a few years out  of the academic world, Christoffel returned to Mathematics in 

1859, obtaining his habilitation from Berlin University. In the following years he was professor at the 

Polytechnic of Zurich, at the newly founded Technical University of Berlin and finally  at the University of 

Strasbourg which had become German after  the defeat of Napoleon III in the 1870 war. Although he wrote 

papers on several different topics like potential theory, differential equations, conformal mappings, 

orthogonal polynomials and still more, the most 

relevant and influential of Christoffel's 

contributions with the furthest reaching 

consequences was his invention of the three-

index symbols that bear his name:   

                                           

 

Defined in terms of a metric g and of its 

inverse, Christoffel  symbols are the first 

example of a set of connection coefficients, 

actually those of the Levi-Civita connection, that 

preserves angles along the parallel transport it 

defines. Christoffel symbols are the key 

ingredients in the definition of the covariant 

derivative of a tensor, in particular of a vector. 

The word tensor was introduced for the first 

time by Hamilton in 1846, but tensor calculus 

was developed around 1890 by Gregorio Ricci 

Curbastro under the title of absolute differential 

calculus and was made accessible to 

mathematicians by the publication of Tullio Levi Civita's 1900 classic text of the same name, originally 

written in Italian, then republished in French with Ricci.  

Gregorio Ricci Curbastro was son in an aristocratic family of Lugo di Romagna. 

On the house where he was born in 1853 (one year before Riemann presented 

his famous dissertation) there stands a plate with the following words: Diede 

alla scienza il calcolo differenziale assoluto, strumento indispensabile per la 

teoria della relativita’  generale, visione nuova dell'universo. He began his 

studies at Rome University but he continued them at Scuola Normale di Pisa 

and finally graduated from the University of Padova in 1875. As his younger 

friend Luigi Bianchi, born in Parma in 1865 and also student of Scuola 

Normale, in the Pisa years he was deeply influenced by the teaching of Ulisse 

Dini and Enrico Betti, the founder of modern topology. Through Betti, both 
Gregorio  Ricci Curbastro (1853 
-1925) 



Ricci and Bianchi captured the seeds of differential geometry planted by 

Riemann few years before. After graduation, Ricci obtained a fellowship that 

allowed him to spend some years in Munich, in Germany. There he came in 

touch with the new conception and classification of geometries, based on 

symmetry groups, developed by Felix Klein and magisterially summarized by 

him in the celebrated Erlangen Programme. These ideas had an analogous 

strong impact on Luigi Bianchi. Promoted to the position of full-professor at the 

University of Padova in 1880, Ricci had there an exceptionally talented graduate 

student: Tullio Levi Civita who was born in that city in 1873. Ricci, Bianchi and 

Levi-Civita constructed the mathematical language used by Einstein to 

formulate General Relativity, which is also the most common language for 

classical differential geometry. The key ingredients of that language are just the 

tensors whose defining property is that of transforming from one coordinate patch to another, with 

suitable products of the jacobian matrix of the coordinate 

transformation:  

 
Hence the absolute differential calculus of Ricci, Levi Civita and 

Bianchi is just the differential calculus for sections of those fiber 

bundles whose transition functions are completely determined 

by the very manifold structure of their base-manifold. The 

concept of covariant differentiation  

 
 
was formally developed by Ricci and Levi Civita and, as already 

stressed above, by using the Christoffel symbols, it realizes the 

idea of parallel transport preserving the angles defined by a 

metric structure. Once the covariant differentiation is given, 

one can consider its antisymmetric square and this leads to the 

Riemann-Christoffel curvature tensor which, sketched by 

Riemann in the Ueber die Hypothesen and analytically defined by Christoffel, realizes for an arbitrary 

manifold the idea of intrinsic curvature devised by Gauss  in the 1828 Disquisitiones :  

                                                                                 
The geometrical meaning of this relation is exemplified  in a 

simple  figure. Consider an infinitesimally small rectangle whose 

two sides are given by the two vectors X and Y (also of 

infinitesimally short length), departing from a given point p.  

Consider next the parallel transport of a third vector V to the 

opposite site of the rectangle. This parallel transport can be 

performed along two routes, both arriving at the same 

destination. The first route follows first X and then Y. The second route does the opposite. The image 

Felix Klein (1849 -1925) 



vectors of these two transports are based 

at the same point, so they can be 

compared. The rotation of one with 

respect to the other is encoded in the 

Curvature Tensor, while the translation of 

one with respect to the other is encoded 

in the Torsion tensor. In their 1899 paper 

Ricci e Levi Civita named Système 

covariant de Riemann what now we call 

Riemann curvature tensor. In the case of 

the Christoffel symbols the torsion is 

identically zero, yet for more general 

connections it can be different from zero 

and Levi-Civita correctly singled out the 

vanishing of the torsion as one of the two 

axioms from which the metric connection can be derived.  

 
In a paper of 1903 Gregorio Ricci introduced a new tensor, later named after him, which is obtained from 

the Riemann-Christoffel tensor through a contraction of indices.  The Ricci tensor is defined as follows: 

                                                                                
 and, on a metric manifold, measures the first deviation of its volume form from the euclidian value. Just for 

this reason it was originally considered by its inventor. Yet such tensor was doomed to play a major role in 

the development of XXth century scientific thought and in the birth of General Relativity.  

Bianchi Identities (1902) 

Preparatory to this great future of the Ricci tensor were the algebraic and differential identifies it satisfies. 

They were derived by Luigi Bianchi in 1902. Actually, according to Levi Civita, the same identities had 

already been discovered by Ricci as early as 1880 but they had been discarded by their author as not 

relevant.  The first of Bianchi identities states that the Ricci tensor is 

symmetric:    

                                                                                                                                

the second, differential identity, states that its divergence is equal to one half 
of the gradient of its trace: 

                                                                          

where, by definition, we have posed: 

                                                                           

which is named the curvature scalar. The Bianchi identities were precisely the clue that lead Einstein, with 

the help of Marcel Grossman, to single out the form of the field equations of General Relativity. Combined 

in a proper way, they suggest the form of a covariantly conserved tensor, the Einstein tensor, which plays 

Luigi Bianchi (1865 - 1928) 



the role of left hand side in the propagation equations, the right hand side being already decided on 

physical grounds, namely the conserved stress energy-tensor.  

After his laurea in Mathematics from the University of Pisa, which he obtained in 1877, Bianchi remained in 

that city for other two years as student of the Corso di Perfezionamento of the Scuola Normale Superiore. 

He graduated in 1879, defending a thesis on helicoidal surfaces. Then, just following the steps of Ricci, he 

was in Germany, first in Munich and then in Göttingen, were he attended courses and seminars given by 

Felix Klein. As already stated, he was deeply influenced by 

Klein’s group-theoretical view of geometry and one of his 

major achievements is precisely along that line. In a paper of 

1898, Bianchi classified all tridimensional spaces that admit 

a continuous group of motions. Actually, so doing, he 

classified all Lie algebras of dimension three. This 

classification, which is organized into nine types, turned out 

to be quite relevant for Cosmology in the framework of 

General Relativity, since it amounts to a classification of all 

possible space-times that are spatially homogeneous. Since 

1882, Bianchi was internal professor at the Scuola Normale 

and in 1886 he won the competition for the chair of 

Projective Geometry at University of Pisa, where he was full-

professor for the rest of his life. The same year he published 

the first edition of his Lezioni di Geometria Differenziale, 

which is the very first comprehensive treaty on the new 

discipline pioneered by Riemann and also the first place 

where the name Differential Geometry appeared. The 

second edition quite enlarged and restructured was 

published in 1902 and contains the famous identities.  

 

The story we have so far reported reveals the  close links between Göttingen and Pisa that stand behind the 

birth of Differential Geometry. This is just one of the red threads that cross the whole mathematical history 

of the XIXth century  providing the cultural background of General Relativity and of that new vision of the 

universe, which the plaque posted on Ricci's house advocates. Another no less relevant red thread links 

Paris, Christiania (now Oslo), Göttingen and Leipzig.  The tale associated with such a thread is that of Group 

Theory and  has both romantic and tragic touches. We briefly pause to trace back such thread from its 

beginning up to the point where it  intersects the thread of Differential Geometry. 

The Tale of  Lie Group Theory 

The notion of a group G was invented by Evariste Galois in the context of his theory of solubility of algebraic 

equations by means of radicals. As it is well known, this romantic and very unlucky mathematical genius 

died in a duel at the age of 22 in 1832. Twice he had tried to publish his spectacular mathematical results 

and twice he did not succeed for incredibly strange reasons. The first time his referee lost the manuscript 

before reading it, the second time the referee died the very same night he received the paper for reviewing 

and no one among his heirs paid attention to those incomprehensible pages. In the last two years of his life 

Evariste was twice arrested as a subversive, spent some months in prison, was released, participated to 

other political quarrels, had a love affair with a girl of vulgar personality, who disgusted him also on that 



front, finally was involved in a stupid debate with a political exponent of 

opposite views, that ended up in the duel which caused his death. 

Perfectly aware of being confronted with almost sure death, the night 

before the duel,  Evariste wrote an exposition of all his mathematical 

results that he gave to his loyal friend Auguste Chevalier. Fortunately, this 

latter did not loose the sixty pages received from Galois and in 1846 Galois 

main theorem was finally published on the Journal de Mathématiques 

Pures et Appliquées, with the praising comments of its main editor, 

namely Joseph Liouville. Once the notion of a transformation group G is 

introduced, the notion of equivalence classes naturally arises. A set of 

objects acted on by G can be rationalized by dividing it into stocks, each of 

which contains all those that are mapped one into the other by some 

transformation of the group. In some sense all the objects that happen to 

be in the same stock are different realizations of the same entity which is none of them, but just the entire 

equivalence class. 

 Directly influenced by Galois’ ideas that came to them through Darboux and Jordan, Sophus Lie and Felix 

Klein started rethinking classical geometry from a new viewpoint. In particular Klein realized that Euclid 

axiomatic definitions of what is an equilateral triangle, a rectangular triangle and so on, can be recast into 

the notion of equivalence classes. There are many triangles that one can draw in a plane but two triangles 

that can be mapped one into other by means of a rotation or a translation, namely an element of what we 

name the Euclidian Group E2 have to be identified and considered just the same triangle. Hence the objects 

of study in Euclidian Geometry are just the equivalence classes with respect to E2. It follows immediately 

that all the propositions of Euclidian Geometry are just statements on properties and relations that are 

invariant with respect to E2 or in three-space with respect to E3. In this way Klein came to conceive the 

momentous Erlangen Programme. Since there are other groups 

different from the Euclidian Group, you can conceive other 

geometries, among which the non-Euclidian one introduced by 

Lobachevsky. Actually you can classify geometries according to the 

group G with respect to which the relations considered in that 

geometry are invariant.  

 In 1870 the Collegium Academicum in Christiania gave to the 

young Norwegian mathematician Sophus Lie, fascinated by Plücker's 

conceptions of Geometry   a research–travel grant that allowed him to 

go to Berlin, Göttingen and eventually to Paris. in Berlin, Sophus Lie 

met with Felix Klein who had studied in Bonn precisely under the 

supervision of Plücker, passed away two years before. The two young 

scientists had a lot of interests in common and became immediately 

close friends, although, as Freudenthal remarks, they had quite 

different characters both as humans and as mathematicians. They 

traveled together to Paris where they met and interacted with Gaston 

Darboux and Camille Jordan.The conversations with Jordan were of the 

highest relevance for both Lie and Klein since the French mathematician attracted their attention to the 

role that group–theory could play in geometry. For Lie this was the germ of a reasoning that conducted him 

to the notion of transformation groups. Klein developed these ideas in what two years later appeared as 

the Erlangen Programme. In any case Lie and Klein discussed intensively about these issues and eventually 

Evariste Galois (1810 - 1832) 

Sophus Lie (1842 - 1899) 



published a common work. They lived in adjoining rooms in the same hotel and saw each other 

continuously. Few days after these scientific events, Napoleon the third, falling into Bismarck’s trap, 

declared war to Prussia and hostilities began (July 19th 1870). Being a citizen of Prussia, Klein had to flee 

immediately from France, while Lie, who was a citizen of Norway, namely of a neutral state, remained. In 

August, when the Prussians had already trapped part of the French Army in Metz, Lie decided to leave Paris 

and hike towards Italy. When he reached Fontainebleau he was arrested as a German spy and his 

mathematical notes, written in German, were used as an evidence against him, regarding them as ciphered 

messages. He spent several weeks in prison and was finally released thanks to the intervention of Darboux 

who explained the case to the suspicious police. Once he was freed, Lie fled to Italy and from there he 

made his way back to Norway through Germany.  

 In 1871, back in Christiania, Lie completed his PhD doctoral thesis on the basis of his Paris 

discoveries and he was awarded his doctorate in 1872. The same year the University of Christiania created 

a new chair on which he was appointed. 

 In 1872, at the age of 23, Felix Klein was appointed Full Professor at the University of Erlangen, 

where he remained only three years, since in 1875 he received and accepted an offer from the Technische 

Hochschule of Münich. There he remained longer, namely five years, and accomplished important steps 

both in his personal and professional life. As for personal life, Münich was the city where, in August 1875, 

he married with Anne Hegel, the granddaughter of the philosopher Georg Wilhelm Friedrich Hegel. On the 

scientific side, Klein worked very much intensively in Münich and his fame as a brilliant and profound 

teacher spread through the world attracting there students that later became famous mathematicians and 

physicists among them Max Planck, Adolf Hurwitz and Ricci Curbastro. 

 Once appointed to professorship in Christiania in 1872, Lie started working on partial differential 

equations. He wrote: "the theory of differential equations is the most important discipline in modern 

mathematics." The influence of their group discussions in Paris motivated Lie in a direction different from 

the geometrical one pursued by Klein in Bavaria. After the interactions with Jordan he was under the strong 

impression of Galois theory about which he had previously heard from Sylow in his student years, without 

paying too much attention. He wanted to uplift to the level of differential equations what Galois had done 

for the algebraic ones. In a paper of 1874 he wrote: "How can knowledge of a stability group for a 

differential equation be utilized towards its integration?" By stability group of a differential equation it was 

meant a group of transformations whose effect was that of permuting the solutions of the equations 

among themselves. Pondering on such questions Lie came to develop the theory of continuous groups of 

transformations and making them infinitesimal he arrived at the notion of Lie algebra satisfied by the 

vector fields that generate such transformations: 

                                                                     
and stated the so named Jacobi identities satisfied by the structure constants c

: 

 

 In the following years the lives of Klein and Lie intersected each other in many ways. In 1876 Klein left 

Münich  for  Leipzig, whose University offered him a prestigious Chair of Geometry. He had not forgotten 

his good friend Lie and knowing about his isolation in Norway, Klein organized to send  him his own  

student Friedrich Engel who helped Lie in the course of nine years. In 1886 Felix Klein changed once again 



his location accepting the offer of Göttingen University, whose world leadership in Mathematics and 

Physics Klein strongly helped to further strengthen, in particular with the appointment of David Hilbert. The 

vacant Chair of Geometry in Leipzig was immediately offered to Lie, who accepted and lived in Germany for 

twelve years up to 1898.  In 1886, the same  year he had joined  the Faculty in Leipzig,  Lie received the visit 

of an obscure school principal arriving from distant Easter Prussia. This was Wilhelm Killing who, two years 

before,  in 1884,  had sent to Klein a small booklet, printed in his school and humbly named  

Programmschrift, where Lie algebras, discovered by him independently from Lie, were presented under a 

different name, together with  the notion of simple Lie algebras, which the same Lie never considered. 

Following   Klein's suggestions, Killing had corresponded by mail with  both Lie and Engel and now, using 

the opportunity of a work-trip to Heidelberg, he had come to Leipzig 

in order to show Lie his results. The bad-tempered Lie, always very 

jealous of his own results and obsessed with the idea of getting 

insufficient recognition for his own work, was ill–disposed towards 

this humble school teacher, coming from nowhere in the far east and 

claiming to have independently obtained Lie algebras. The meeting 

was a complete failure and Killing continued his journey, remaining 

however on good terms with Engel. October 18th 1887, Killing wrote 

to Engel announcing that he had found the complete list of simple Lie 

Algebras, any semisimple one being a tensor sum of the latter. 

Indeed Killing had already invented the formalism of roots and he 

had constructed the complete classification of simple Lie algebras, 

including the exceptional ones G2,F4,E6,E7,E8 .  All of Killing’s results 

were published between 1888 and 1889 on the prestigious journal 

Mathematische Annalen founded by Klein. For the rest of his life-

time, that extended until 1923, Killing was absorbed by teaching, administration and charitable work.   It 

was in 1894 the turn of Cartan to continue to marvelous tale of Lie algebras. Cartan’s doctoral dissertation 

was presented in that year and was already a masterpiece. His thesis  was a rigorous remake of Killing’s 

papers  where he also gave the explicit matrix construction of all exceptional Lie algebras, already 

announced in a paper published by him one year before in German. Of very humble origin, being the son of 

a poor blacksmith in the mountain village of Dolomieu in Haute Savoie, Cartan obtained the very best scientific 

education available at the time thanks to the state-stipends that the French Republic had introduced for 

talented people, independently from their social or economical status. Discovered in his remote village by 

the school inspector Dubost, Elie was state-supported in order to attend Lycée in Lyon and then entered 

the Ecole Normale Superiéure of Paris where he had such masters as 

Picard, Darboux and Hermite, becoming one of the most prominent 

mathematician of the XXth century and probably of all times.  

The two threads joined  

Thus we see how the two red threads of Curved Geometry and of 

Group Theory intersected and brought the mathematical language 

and the weaponry needed by the new Physics of the XXth century to 

maturity.  In 1858  Enrico Betti, professor at the University of Pisa,  

visited Göttingen, Berlin and Paris, making many important 

mathematical contacts. In Göttingen Betti met Riemann and 

developed friendship with him. In an attempt to improve his health, 

Riemann made an Italian visit in the autumn of 1863 and renewed his 

Wilhelm Karl Joseph Killing (1847-1923). 
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friendship with Betti. Ricci Curbastro and Luigi Bianchi were both 

students of Betti and learnt from him about Riemann ideas on 

curved manifolds. During their stays in Germany, respectively in 

Munich and in Gottingen, they absorbed Klein's views on the role 

of groups in geometry and certainly they became early acquainted 

with Lie's work on Lie algebras. The French tradition, going back to 

Galois, on whose theory Betti himself had worked extensively, got 

mixed with the German tradition originating from Gauss' work on 

curved surfaces  and brought the Italian Masters of the New 

Differential Geometry to that top at world-level that allowed them 

to pave Einstein's path toward General Relativity.  

Bianchi, Ricci and  Levi Civita: from 1902 to 1941 

Bianchi died in 1928 and he is buried in the Cimitero 

Monumentale, Piazza dei Miracoli of Pisa. Since the later 1880.s up 

to the end of his life he was an extremely prominent and influential 

mathematician of the then flourishing Italian School of Geometry. 

In 1904 Bianchi was member of the committee appointed by the 

Academia Nazionale dei Lincei to select the winning paper for the  Royal Prize of Mathematics. Ricci’s 

ambitions on that Prize had already been manifested some years before, when he presented his works to 

the committee then headed by Eugenio Beltrami. Notwithstanding Beltrami’s very favorable impressions, 

the final verdict of the jury on the relevance of tensor analysis had been hesitating and the Prize had not 

been attributed. Similar conclusion obtained the competition of 1904. Luigi Bianchi showed a great 

appreciation for the mathematical soundness and vastity of Ricci’s methods but concluded that tensor 

analysis had not yet demonstrated its relevance and essentiality. He utilized Kronecker’s words to say that 

he preferred new results found with old methods rather than old results retrieved with new, although very 

powerful, techniques.  This sentence can be compared with the Poincaré sentence reported by Levi-Civita 

and Ricci at the beginning of their 1899  paper. These events are moreover  surprising in view of the fact 

that two years before, in 1902, Bianchi had published his paper containing those identities on the Ricci 

tensor for which his name is mostly remembered. The Royal Prize for Mathematics, denied to Ricci 

Curbastro, was attributed few years later, in the 1907 edition, to Ricci’s former student Tullio Levi Civita, by 

a committee that once again included Luigi Bianchi, together with other distinguished mathematicians such 

as Vito Volterra and Corrado Segre. This time the usefulness of the tensor methods had been made 

absolutely undoubtable by the vastity of Levi-Civita’s results. Although a little bit dismayed by the failure to 

get the Royal Prize, Ricci Curbastro ended his life in 1925 surrounded by the appreciation of his colleagues 

and of his fellow citizens both as a scientist and as a politician. Indeed he was nominated member of 

several academies, including the most prestigious one, that of Lincei and also occupied positions in the local 

administration of his native city, Lugo di Romagna. On the contrary his genial student Levi-Civita, who was 

professor at the University of Rome La Sapienza, notwithstanding the Royal Prize and other honors, 

suffered, under the fascist racial laws of 1938, the removal from his chair because of his Jewish origin. 

Depressed and completely isolated from the scientific world he died from sorrow in 1941. It is a luminous 

shot in a dark and barbarous time that when he was removed from his Chair at la Sapienza, Levi-Civita was 

offered a chair by the Academia Pontificia.  

Tullio Levi-Civita (1873-1941) 


