The Three Italians that paved Einstein's path to General
Relativity and the origins of Differential Geometry.

Pietro Fré (University of Torino & Embassy of Italy in Moscow)

The first detection of gravitational waves, occurred in the centennial year of General Relativity, was not
only a spectacular confirmation of Einstein's Theory, but also the occasion of seeing the differential
equations encoded in the Ricci tensor at work. Indeed this is what is ultimately encoded in the the signal
registered by the two Ligos. Thus, in this exciting year 2016, while we wait for the new data that the three
interferometers will provide us with, just as they start again on duty this fall, it is most appropriate to
review the interesting conceptual path that, crossing through the entire history of XIX century
Mathematics, led to the merging of Physics into Geometry finally operated by Einstein at the dawn of the
XX century. Within the framework of this tale, it is not only appropriate but long due and obligatory to
recall and commemorate the extraordinary role played by three great Italians, namely Ricci Curbastro,
Bianchi and Levi Civita. Of the last and youngest one among these three, Levi Civita, Einstein used to say
that, apart from spaghetti, he was the most important thing that existed in Italy.
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Indeed in order to arrive at the conception of Space-Time that underlies Einstein's Theory, three conceptual
revolutions were needed:

1. Euclidian geometry, that had been considered by Kant an apriori truth at the fundament of all
sensorial experience, had to be dethronized, making it possible to consider non-euclidian signatures
of what was later named a metric.

2. Cartesian coordinates had to be detronized, in favor of intrinsic coordinates able to describe
manifolds of arbitrary curvature. A new tensor calculus was needed to treat new mathematical
entities that soon were turned by Einstein into physical ones.

3. Group Theory ought to be developed in order to formalize the notion of general coordinate
transformations and to understand the symmetries of various geometries.



The first revolution was initiaded by the Russian mathematician Nicolai
Ivanovich Lobachevsky (1793-1856) who introduced the first model of a non-
Euclidian geometry in 1826. It was continued by Eugenio Beltrami who, in 1868,
provided explicit representations of Lobachevsky geometry on curved surfaces
and by Poincaré, who encoded such a geometry into a two-manifold with a
specific metric. The second and the third revolutions were respectively initiated
by Gauss in 1828 and by Galois in 1832. The complicated conceptual history that
followed these events and culminated in the founding, by Ricci, Levi-Civita and
Bianchi, of a new mathematical discipline, namely Differential Geometry, is the

. tale told in the next lines. We begin by reporting the words that open Levi
/’4 ! / ety Civita and Ricci's paper of 1899. They are particularly inspiring in view of what
Nicolai Ivanovich

Lobachevsky (1793-1856) was to follow:
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frangais) une multitude de
faits  sans aucun lien
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The initial page in the Greek original of Euclid's Elements.

Henri Poincaré (1854-1912)

Eugenio Beltrami (1836 - 1900)
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The first appearance of a metric
is in the 1828 essay of Gauss on

curved surfaces. Written in Latin,

[l

superficies curvas contains the major revolutionary step forward that was necessary to overcome the

the Disquisitiones Generales circa

precincts of Euclidian geometry and found a new differential science of spaces able to treat both flat and
Figura 1 Carl Friedrich Gauss (1777--  curved ones. Up to Gauss' paper, Geometry was either formulated

1855). Gauss, the King of abstractly in terms of Euclidian axioms or analytically in terms of
Mathematicians, was Professor at the

University of Gottingen for many
decades up to the very end of his long  properties of plane figures like triangles, squares and other polygons,
life. His contributions to all fields of

Mathematics were enormous and most ) ) ) o
profound. immersed in an external space where it was implicitly assumed that

Cartesian coordinates. By Geometry it was meant the study of global

or solids like the regular polyhedra. All such objects were conceived as

one could always define the absolute distance d(A,B) between any two
given points A and B. Distance is the basic brick of the whole Euclidian building and it is calculated as the
length of the segment with end-points in A and B, lying on the unique straight line which goes through any
such pair of distinct points. Curved surfaces were obviously known before Gauss, yet their shape and
properties were conceived only through
their immersion in three-dimensional
space, considered unique and absolute, as

: pretended by Immanuel Kant who
N R

\‘.\\\:‘\\\’Iﬁ\ " . qe . .
N, . promoted Euclidian geometry to an a priori

curve U -

truth lying at the basis of any sensorial
experience. Gauss revolutionary starting
point was that of reformulating the geometrical study of surfaces from an intrinsic rather than extrinsic
viewpoint. He wondered how a little being, confined to live on the surface, might have perceived the
geometry of his world. Rather than viewing the global shape of the surface M, inaccessible to his
observations, the little creature would have explored its local properties in the vicinity of a point p of M. In
order to study curved surfaces in these terms, Gauss understood that it was necessary to abandon
Cartesian coordinates as a system of point identification. Gauss was the first to grasp the notion of
curvilinear coordinates and invented Gaussian coordinates. A very simple but revolutionary idea. By
introducing curvilinear Gaussian coordinates, the King of Mathematicians freed the study of surfaces from
their immersion in the external Euclidian space but he immediately had to cope with a new fundamental
problem. Having abolished from the list of one's mathematical instruments the straight line segments that
join any two points A and B of the surface M, how can we calculate their distance? The great intuitions of
Gauss were the tangent plane and the linear element ds’,namely the metric. The problem addressed by
Gauss was to give an answer to the following question: Can we define the length of any curve departing



from p and arriving at q, both in M, in terms of data completely
intrinsic to the surface. Gauss' answer was positive and based on the
change of perspective at the basis of the new differential geometry. Let
us reformulate the initial question whether we might define the
absolute distance between two arbitrary points A,B of the surface M,
adding the extra condition that A and B should be only infinitesimally
apart from each other. Analytically this means that if the Gaussian
coordinates of A are (u,v), then those of B should be (u+du,v+dv) where
du e dv are infinitesimal. Gauss crucial observation is that a very small
portion of the surface M, around any point p, can be approximated by a

Bernhard Riemann (1826 -- 1866). portion of the tangent plane to the surface at the point p. The square

Riemann’s dissertation was published  |ength of the segment joining A and B, named in modern notation ds’,
posthumous by Dedekind on the

ABHANDLUNGEN DER KONIGLICHEN
GESELLSCHAFT DER WISSENSCHAFTEN namely :
ZU GOTTINGEN

was expressed by Gauss as a quadratic form in the differentials (du, dv),

ds® = F(u,v) du® + G(u,v) dv’ + H(u,v) dudv.

Written in 1828 this formula provided the first example of a Riemannian metric, although Riemann was at
that time only a two-year old child.

Bernhard Riemann introduces n-dimensional metric manifolds in 1854

The name of Riemann is associated in Mathematics with so many different and fundamental
objects that the contemporary student is instinctively led to think about the scientific production of this
giant of human thought as composed by a countless number of papers, books and contributions. Actually
the entire corpus of Riemann's works is constituted only by 225 pages distributed over 11 articles
published during the life-time of their author to which one has to add the 102 pages of the 4 posthumous
publications.

Among the latter there are the 16 pages of the Ueber die Hypothesen, welche der Geometrie zu Grunde
liegen which, in 1854, was debated by the candidate in front of the Gottingen Faculty of Philosophy as
Habilitationsschrift. The habilitation to teach courses was the traditional first step in the academic career
foreseen by most European universities, all over their very long history. In XIX century Germany the
procedure to access habilitation consisted of the writing of a dissertation on a topic chosen by the Faculty
from a list of three proposed by the candidate. Typical time allowed for the preparation of such a
dissertation was a couple of months and in the case of Riemann it amounted to exactly seven weeks.
Obsessed the whole of his short life by extreme poverty and by a very poor health, that eventually led him
to death from pulmonary consumption at the quite young age of thirty-nine, the shy and meek Bernhard
Riemann, who was nonetheless quite conscious of his own talents, had already profoundly impressed
Gauss with his diploma thesis. Written in 1851 and entitled Grundlagen fur eine allgemeine Theorie der
Functionen einer Verdnderlichen complexen Grésse which can be translated as Principles of a General
Theory of the Functions of one complex variable, Riemann's thesis was completely new and contained all
the essentials of the theory of analytic functions as it is taught up to the present day in most universities of
the world. Quite openly Gauss told his young student that for many years he had cheered the plan of
writing a similar essay on that very topics, yet now he would refrain from doing so since everything relevant
to that province of thought had already been said by Riemann.



When three years later Riemann presented
to the Gottingen Faculty his three proposals for the
theme of his own Habilitationsschrift, two choices

[Tober
were in fields where the young mathematician felt

die Hypothesen, welehe der Geometrie zu Grunde liegen,

Yo quite confident, while the third, with some
iyl hesitation, was just added in order to complete
the triplet and with the secret hope that it would
be immediately discarded by the academic
committee as something too philosophical and ill
defined. The third proposed title was Grundlagen
der Geometrie, namely the Principles of Geometry.
Remembering the talents of the young Herr

Riemann, Gauss was fascinated by the idea of

hrfach wx

giving him precisely such a challenging subject as
the Foundations of Geometry to see what he might
come up with it. The King of Mathematicians
persuaded the Faculty to make such a choice and

the poor Bernhard was dismayed by the news. He
wrote to his father, a poor Lutheran minister,
about his concerns on this matter but he also
BBAW Z 2038 (12 1887)

expressed him his confidence that he would not
come too late and that his merits as an independent researcher would be appreciated.

Riemann had accepted the challenge and in seven weeks he produced such a masterpiece of
Mathematics and Philosophy as the Ueber die Hypothesen, welche der Geometrie zu Grunde liegen, that is
About the Hypotheses lying at the Foundations of Geometry. With an unparalleled clarity of mind, Riemann
began his essay with a profound criticism of the traditional approach to Geometry, refusing the Kantian
dogma that this latter is an a-priori datum and rather inclining to the idea that which geometry is the
actual one of Physical Space should be determined from experience. He said: It is known that geometry
assumes, as things given, both the notion of space and the first principles of constructions in space. She
gives definitions of them which are merely nominal, while the true determinations appear in the form of
axioms. The relation of these assumptions remains consequently in darkness; we neither perceive whether
and how far their connection is necessary, nor a priori, whether it is possible. From Euclid to Legendre (to
name the most famous of modern reforming geometers) this darkness was cleared up neither by
mathematicians nor by such philosophers as concerned themselves with it

After stating this two-thousand year old stalemate, Riemann proceeded to diagnose its cause.
Explicitly he said: The reason of this is doubtless that the general notion of multiply extended magnitudes
(in which space-magnitudes are included) remained entirely unworked. | have in the first place, therefore,
set myself the task of constructing the notion of a multiply extended magnitude out of general notions of
magnitude. It will follow from this that a multiply extended magnitude is capable of different measure-
relations, and consequently that space is only a particular case of a triply extended magnitude. In
contemporary language the multiply extended magnitudes’ were simply the manifolds and the measure

The translation of Riemann's essay from German into English was done by William Clifford.
’In the original German text of Riemann these were named mehrfachausgedehnter Grossen. In modern scientific
German the notion of manifolds is referred to as mannigfaltigkeiten.



relations are just the metrics introduced for the first time by Gauss. Following the new road opened by
Gauss with the Disquisitiones, Riemann introduced n-extended manifolds whose points are labeled by n
rather than two curvilinear coordinates X' and introduced the line element as a generic symmetric quadratic
form in the differentials of these coordinates

ds’ = gi(x) dx'dx.

The coefficients of this quadratic form g;(x) were later known as the Riemannian metric tensor.
Riemann grasped the main point, namely that the geometry of manifolds is encoded in the possible metric
tensors or measure relations, as he called them, and made the following bold statement: Hence flows as a
necessary consequence that the propositions of geometry cannot be derived from general notions of
magnitude, but that the properties which distinguish Space from other conceivable triply extended
magnitudes are only to be deduced from experience. Thus arises the problem, to discover the simplest
matters of fact from which the measure-relations of space may be determined; a problem which from the
nature of the case is not completely determinate, since there may be several systems of matters of fact
which suffice to determine the measure-relations of space.

In other words, the young genius was aware that the same manifold could support quite different
metrics and thought that this applied in particular to Space, i.e. to the 3-dimensional physical world of our
sensorial experience. He posed himself the question which should be the metric of Space and came to the
conclusion that such a question could only be answered through experiment. This amounted to say that the
geometry of the world is a matter of Physics and not of a priori Philosophy or Mathematics. Such a
sentence of Riemann must have influenced Einstein quite deeply. Indeed the final outcome of Einstein
Theory of Relativity is that the geometry of space-time is dynamically determined by its matter content
through Einstein field equations. In considering such a question as what is the preferred metric to be
selected for a given manifold, Riemann formulated the basic problem of invariants. The matter of facts® to
which he alluded are the intrinsic properties encoded in a given metric tensor namely its invariants and he
formulated the problem of determining, for instance, the minimal complete number of invariants able to
select Euclidian geometry. In his quest for these invariants he came to the notion of the Riemann curvature
tensor that he outlined in his very dissertation. As we already recalled, Riemann died young and had no
time to develop the new theory of differential geometry that he had founded. Yet he had the time to come
to Italy and, through his contact with the Scuola Normale di Pisa and the research group of Enrico Betti,
whom he deeply admired, to plant the seeds of the absolute differential calculus in the Italian Peninsula
where, later, they were strongly developed by Gregorio Ricci Curbastro and Tullio Levi Civita.

The Absolute Differential Calculus of Ricci Curbastro and Levi Civita (1899)
The primary concern of the new differential geometry, founded by
Riemann as a generalization of Gauss work on surfaces, was that of
defining the length of curves on arbitrary manifolds. This leads to the
notion of the metric. Once the metric is established, a natural way arises
of transporting vectors along any given curve. We can say that a vector is
parallel-transported along an arc of curve if the angle between the
transported vector and the tangent vector to the curve remains constant
throughout the entire transport. The metric connection is that
infinitesimal displacement of a vector X along the direction singled out by
another one Y which is so defined as to fulfill the property of preserving

3EinfachstenThatsachenin the original German text.

Elwin Bruno Christoffel (1929 —1918)



angles. It was first conceived by Christoffel. Elwin Bruno Christoffel was born in 1829 in Montjoie, near
Aachen, that was renamed Monschau in 1918. After attending secondary schools in Cologne, he enrolled at
the University of Berlin, where he had such teachers as Eisenstein and Dirichlet. Particularly the latter is
duly considered his master. Christoffel's doctor dissertation, dealing with the motion of electricity in
homogeneous media was defended in 1856, just two years after Riemann's presentation of the Ueber die
Hypothesen. Having spent a few years out of the academic world, Christoffel returned to Mathematics in
1859, obtaining his habilitation from Berlin University. In the following years he was professor at the
Polytechnic of Zurich, at the newly founded Technical University of Berlin and finally at the University of
Strasbourg which had become German after the defeat of Napoleon Il in the 1870 war. Although he wrote
papers on several different topics like potential theory, differential equations, conformal mappings,

orthogonal polynomials and still more, the most

influential of Christoffel's
with the furthest
consequences was his invention of the three-

relevant and Méthodes de calenl différentiel absolu et leurs applications.
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Curbastro under the title of absolute differential

calculus and was made accessible to

mathematicians by the publication of Tullio Levi Civita's 1900 classic text of the same name, originally

written in Italian, then republished in French with Ricci.

Gregorio Ricci Curbastro was son in an aristocratic family of Lugo di Romagna.
On the house where he was born in 1853 (one year before Riemann presented
his famous dissertation) there stands a plate with the following words: Diede
alla scienza il calcolo differenziale assoluto, strumento indispensabile per la

teoria della relativita’

studies at Rome University but he continued them at Scuola Normale di Pisa
and finally graduated from the University of Padova in 1875. As his younger
friend Luigi Bianchi, born in Parma in 1865 and also student of Scuola
Normale, in the Pisa years he was deeply influenced by the teaching of Ulisse
Dini and Enrico Betti, the founder of modern topology. Through Betti, both

generale, visione nuova dell'universo. He began his

Gregorio Ricci Curbastro (1853
-1925)




Ricci and Bianchi captured the seeds of differential geometry planted by
Riemann few years before. After graduation, Ricci obtained a fellowship that
allowed him to spend some years in Munich, in Germany. There he came in
touch with the new conception and classification of geometries, based on
symmetry groups, developed by Felix Klein and magisterially summarized by
him in the celebrated Erlangen Programme. These ideas had an analogous
strong impact on Luigi Bianchi. Promoted to the position of full-professor at the
University of Padova in 1880, Ricci had there an exceptionally talented graduate
student: Tullio Levi Civita who was born in that city in 1873. Ricci, Bianchi and
Levi-Civita constructed the mathematical language used by Einstein to
formulate General Relativity, which is also the most common language for
classical differential geometry. The key ingredients of that language are just the

Felix Klein (1849 -1925)

tensors whose defining property is that of transforming from one coordinate patch to another, with
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Hence the absolute differential calculus of Ricci, Levi Civita and
Bianchi is just the differential calculus for sections of those fiber
bundles whose transition functions are completely determined
by the very manifold structure of their base-manifold. The
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was formally developed by Ricci and Levi Civita and, as already
stressed above, by using the Christoffel symbols, it realizes the
idea of parallel transport preserving the angles defined by a
metric structure. Once the covariant differentiation is given,
one can consider its antisymmetric square and this leads to the

Riemann-Christoffel curvature tensor which, sketched by

Riemann in the Ueber die Hypothesen and analytically defined by Christoffel, realizes for an arbitrary

manifold the idea of intrinsic curvature devised by Gauss in the 1828 Disquisitiones :

. . rJ
["*’,u , ¥ 1.-] VP = UGR;WG

The geometrical meaning of this relation is exemplified in a
simple figure. Consider an infinitesimally small rectangle whose
two sides are given by the two vectors X and Y (also of
infinitesimally short length), departing from a given point p.
Consider next the parallel transport of a third vector V to the
opposite site of the rectangle. This parallel transport can be
performed along two routes, both arriving at the same

destination. The first route follows first X and then Y. The second route does the opposite. The image



Systeme de Riemann. — Relations entre les éléments du deuxieme
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Les symboles a,, . sont les éléments d'un systéme quadruple covariant,
qui a une grande importance dans la théorie des quadriques de différen-
tielles. On les trouve dans la Commentatio mathematica de Riemann¥)
(& un factenr numérique pres) et cest & canse de cela que nous désignerons
ce systeme par le nom de sysééme covariant de Riemann. — Les expressions
@y ¢ furent rencontrées avant la publication du Mémoire cité du grand
géométre par M. Christoffel ¥¥), qui en mit en évidence les propriétés fonda-
mentales. Il suffira ici de rappeler que le nombre de ces expressions,
qui ne sont lides entre elles par aucune relation lindaire, est N=n2(n"—1):12.

vectors of these two transports are based
at the same point, so they can be
compared. The rotation of one with
respect to the other is encoded in the
Curvature Tensor, while the translation of
one with respect to the other is encoded
in the Torsion tensor. In their 1899 paper
Civita
covariant de Riemann what now we call

Ricci e Levi named Systéeme
Riemann curvature tensor. In the case of
the Christoffel symbols the torsion is
identically zero, yet for more general
connections it can be different from zero

and Levi-Civita correctly singled out the

vanishing of the torsion as one of the two
axioms from which the metric connection can be derived.

In a paper of 1903 Gregorio Ricci introduced a new tensor, later named after him, which is obtained from
the Riemann-Christoffel tensor through a contraction of indices. The Ricci tensor is defined as follows:

N
: _ p
Ric,y = Z Ruvp
p=1
and, on a metric manifold, measures the first deviation of its volume form from the euclidian value. Just for
this reason it was originally considered by its inventor. Yet such tensor was doomed to play a major role in
the development of XXth century scientific thought and in the birth of General Relativity.

Bianchi Identities (1902)
Preparatory to this great future of the Ricci tensor were the algebraic and differential identifies it satisfies.
They were derived by Luigi Bianchi in 1902. Actually, according to Levi Civita, the same identities had
already been discovered by Ricci as early as 1880 but they had been discarded by their author as not
relevant. The first of Bianchi identities states that the Ricci tensor is :

symmetric:
Ric,, = Ricy,

the second, differential identity, states that its divergence is equal to one half
of the gradient of its trace:

"ﬁ-"l'“ Ri.'C“ Vv = .-]L\-"II‘-R.

where, by definition, we have posed:

UV T3 .
R = g"" Ricy, Luigi Bianchi (1865 - 1928)
which is named the curvature scalar. The Bianchi identities were precisely the clue that lead Einstein, with
the help of Marcel Grossman, to single out the form of the field equations of General Relativity. Combined
in a proper way, they suggest the form of a covariantly conserved tensor, the Einstein tensor, which plays



the role of left hand side in the propagation equations, the right hand side being already decided on
physical grounds, namely the conserved stress energy-tensor.

After his laurea in Mathematics from the University of Pisa, which he obtained in 1877, Bianchi remained in
that city for other two years as student of the Corso di Perfezionamento of the Scuola Normale Superiore.
He graduated in 1879, defending a thesis on helicoidal surfaces. Then, just following the steps of Ricci, he
was in Germany, first in Munich and then in Goéttingen, were he attended courses and seminars given by
Felix Klein. As already stated, he was deeply influenced by

Klein’s group-theoretical view of geometry and one of his
. . . . . LUIGI BIANCHI
major achievements is precisely along that line. In a paper of PROPBESORE DELLA Eels UNIVNESITA DI PISA
1898, Bianchi classified all tridimensional spaces that admit
a continuous group of motions. Actually, so doing, he

classified all Lie algebras of dimension three. This LEZIONI

classification, which is organized into nine types, turned out o

GEOMETRIA DIFFERENZIALE

to be quite relevant for Cosmology in the framework of
General Relativity, since it amounts to a classification of all

possible space-times that are spatially homogeneous. Since Swanda dizions riveduta & cosidsevolnenle sumentata
1882, Bianchi was internal professor at the Scuola Normale IN DUE VOLUMI
and in 1886 he won the competition for the chair of

Projective Geometry at University of Pisa, where he was full- VoLONE L
professor for the rest of his life. The same year he published '
the first edition of his Lezioni di Geometria Differenziale, @
which is the very first comprehensive treaty on the new

discipline pioneered by Riemann and also the first place

where the name Differential Geometry appeared. The

second edition quite enlarged and restructured was PISA
published in 1902 and contains the famous identities. R

1902

The story we have so far reported reveals the close links between Go6ttingen and Pisa that stand behind the
birth of Differential Geometry. This is just one of the red threads that cross the whole mathematical history
of the XIXth century providing the cultural background of General Relativity and of that new vision of the
universe, which the plaque posted on Ricci's house advocates. Another no less relevant red thread links
Paris, Christiania (now Oslo), Gottingen and Leipzig. The tale associated with such a thread is that of Group
Theory and has both romantic and tragic touches. We briefly pause to trace back such thread from its
beginning up to the point where it intersects the thread of Differential Geometry.

The Tale of Lie Group Theory

The notion of a group G was invented by Evariste Galois in the context of his theory of solubility of algebraic
equations by means of radicals. As it is well known, this romantic and very unlucky mathematical genius
died in a duel at the age of 22 in 1832. Twice he had tried to publish his spectacular mathematical results
and twice he did not succeed for incredibly strange reasons. The first time his referee lost the manuscript
before reading it, the second time the referee died the very same night he received the paper for reviewing
and no one among his heirs paid attention to those incomprehensible pages. In the last two years of his life
Evariste was twice arrested as a subversive, spent some months in prison, was released, participated to
other political quarrels, had a love affair with a girl of vulgar personality, who disgusted him also on that



front, finally was involved in a stupid debate with a political exponent of
opposite views, that ended up in the duel which caused his death.
Perfectly aware of being confronted with almost sure death, the night
before the duel, Evariste wrote an exposition of all his mathematical
results that he gave to his loyal friend Auguste Chevalier. Fortunately, this
latter did not loose the sixty pages received from Galois and in 1846 Galois
main theorem was finally published on the Journal de Mathématiques
Pures et Appliquées, with the praising comments of its main editor,
namely Joseph Liouville. Once the notion of a transformation group G is
introduced, the notion of equivalence classes naturally arises. A set of

objects acted on by G can be rationalized by dividing it into stocks, each of

b AUAN AN ks which contains all those that are mapped one into the other by some
Evariste Galois (1810 - 1832)

transformation of the group. In some sense all the objects that happen to
be in the same stock are different realizations of the same entity which is none of them, but just the entire
equivalence class.

Directly influenced by Galois’ ideas that came to them through Darboux and Jordan, Sophus Lie and Felix
Klein started rethinking classical geometry from a new viewpoint. In particular Klein realized that Euclid
axiomatic definitions of what is an equilateral triangle, a rectangular triangle and so on, can be recast into
the notion of equivalence classes. There are many triangles that one can draw in a plane but two triangles
that can be mapped one into other by means of a rotation or a translation, namely an element of what we
name the Euclidian Group E, have to be identified and considered just the same triangle. Hence the objects
of study in Euclidian Geometry are just the equivalence classes with respect to E,. It follows immediately
that all the propositions of Euclidian Geometry are just statements on properties and relations that are
invariant with respect to E, or in three-space with respect to E;. In this way Klein came to conceive the

momentous Erlangen Programme. Since there are other groups
different from the Euclidian Group, you can conceive other
geometries, among which the non-Euclidian one introduced by
Lobachevsky. Actually you can classify geometries according to the
group G with respect to which the relations considered in that
geometry are invariant.

In 1870 the Collegium Academicum in Christiania gave to the
young Norwegian mathematician Sophus Lie, fascinated by Pliicker's
conceptions of Geometry a research—travel grant that allowed him to
go to Berlin, Gottingen and eventually to Paris. in Berlin, Sophus Lie
met with Felix Klein who had studied in Bonn precisely under the
supervision of Pliicker, passed away two years before. The two young
scientists had a lot of interests in common and became immediately
close friends, although, as Freudenthal remarks, they had quite

different characters both as humans and as mathematicians. They
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traveled together to Paris where they met and interacted with Gaston

Darboux and Camille Jordan.The conversations with Jordan were of the Sophus Lie (1842 - 1899)

highest relevance for both Lie and Klein since the French mathematician attracted their attention to the
role that group—theory could play in geometry. For Lie this was the germ of a reasoning that conducted him
to the notion of transformation groups. Klein developed these ideas in what two years later appeared as
the Erlangen Programme. In any case Lie and Klein discussed intensively about these issues and eventually



published a common work. They lived in adjoining rooms in the same hotel and saw each other
continuously. Few days after these scientific events, Napoleon the third, falling into Bismarck’s trap,
declared war to Prussia and hostilities began (July 19th 1870). Being a citizen of Prussia, Klein had to flee
immediately from France, while Lie, who was a citizen of Norway, namely of a neutral state, remained. In
August, when the Prussians had already trapped part of the French Army in Metz, Lie decided to leave Paris
and hike towards Italy. When he reached Fontainebleau he was arrested as a German spy and his
mathematical notes, written in German, were used as an evidence against him, regarding them as ciphered
messages. He spent several weeks in prison and was finally released thanks to the intervention of Darboux
who explained the case to the suspicious police. Once he was freed, Lie fled to Italy and from there he
made his way back to Norway through Germany.

In 1871, back in Christiania, Lie completed his PhD doctoral thesis on the basis of his Paris
discoveries and he was awarded his doctorate in 1872. The same year the University of Christiania created
a new chair on which he was appointed.

In 1872, at the age of 23, Felix Klein was appointed Full Professor at the University of Erlangen,
where he remained only three years, since in 1875 he received and accepted an offer from the Technische
Hochschule of Minich. There he remained longer, namely five years, and accomplished important steps
both in his personal and professional life. As for personal life, Mlinich was the city where, in August 1875,
he married with Anne Hegel, the granddaughter of the philosopher Georg Wilhelm Friedrich Hegel. On the
scientific side, Klein worked very much intensively in Minich and his fame as a brilliant and profound
teacher spread through the world attracting there students that later became famous mathematicians and
physicists among them Max Planck, Adolf Hurwitz and Ricci Curbastro.

Once appointed to professorship in Christiania in 1872, Lie started working on partial differential
equations. He wrote: "the theory of differential equations is the most important discipline in modern
mathematics." The influence of their group discussions in Paris motivated Lie in a direction different from
the geometrical one pursued by Klein in Bavaria. After the interactions with Jordan he was under the strong
impression of Galois theory about which he had previously heard from Sylow in his student years, without
paying too much attention. He wanted to uplift to the level of differential equations what Galois had done
for the algebraic ones. In a paper of 1874 he wrote: "How can knowledge of a stability group for a
differential equation be utilized towards its integration?" By stability group of a differential equation it was
meant a group of transformations whose effect was that of permuting the solutions of the equations
among themselves. Pondering on such questions Lie came to develop the theory of continuous groups of
transformations and making them infinitesimal he arrived at the notion of Lie algebra satisfied by the
vector fields W, that generate such transformations:
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In the following years the lives of Klein and Lie intersected each other in many ways. In 1876 Klein left
Minich for Leipzig, whose University offered him a prestigious Chair of Geometry. He had not forgotten
his good friend Lie and knowing about his isolation in Norway, Klein organized to send him his own
student Friedrich Engel who helped Lie in the course of nine years. In 1886 Felix Klein changed once again



his location accepting the offer of Gottingen University, whose world leadership in Mathematics and
Physics Klein strongly helped to further strengthen, in particular with the appointment of David Hilbert. The
vacant Chair of Geometry in Leipzig was immediately offered to Lie, who accepted and lived in Germany for
twelve years up to 1898. In 1886, the same year he had joined the Faculty in Leipzig, Lie received the visit
of an obscure school principal arriving from distant Easter Prussia. This was Wilhelm Killing who, two years
before, in 1884, had sent to Klein a small booklet, printed in his school and humbly named
Programmschrift, where Lie algebras, discovered by him independently from Lie, were presented under a
different name, together with the notion of simple Lie algebras, which the same Lie never considered.
Following Klein's suggestions, Killing had corresponded by mail with both Lie and Engel and now, using
the opportunity of a work-trip to Heidelberg, he had come to Leipzig
in order to show Lie his results. The bad-tempered Lie, always very
jealous of his own results and obsessed with the idea of getting
insufficient recognition for his own work, was ill-disposed towards
this humble school teacher, coming from nowhere in the far east and
claiming to have independently obtained Lie algebras. The meeting
was a complete failure and Killing continued his journey, remaining
however on good terms with Engel. October 18th 1887, Killing wrote
to Engel announcing that he had found the complete list of simple Lie
Algebras, any semisimple one being a tensor sum of the latter.
Indeed Killing had already invented the formalism of roots and he
had constructed the complete classification of simple Lie algebras,

: including the exceptional ones G,,F4,Eg,E7,Es . All of Killing’s results
Wilhelm Karl Joseph Killing (1847-1923).  were published between 1888 and 1889 on the prestigious journal
Mathematische Annalen founded by Klein. For the rest of his life-
time, that extended until 1923, Killing was absorbed by teaching, administration and charitable work. It
was in 1894 the turn of Cartan to continue to marvelous tale of Lie algebras. Cartan’s doctoral dissertation
was presented in that year and was already a masterpiece. His thesis was a rigorous remake of Killing’s
papers where he also gave the explicit matrix construction of all exceptional Lie algebras, already
announced in a paper published by him one year before in German. Of very humble origin, being the son of
a poor blacksmith in the mountain village of Dolomieu in Haute Savoie, Cartan obtained the very best scientific
education available at the time thanks to the state-stipends that the French Republic had introduced for
talented people, independently from their social or economical status. Discovered in his remote village by
the school inspector Dubost, Elie was state-supported in order to attend Lycée in Lyon and then entered
the Ecole Normale Superiéure of Paris where he had such masters as
Picard, Darboux and Hermite, becoming one of the most prominent
mathematician of the XXth century and probably of all times.

The two threads joined

Thus we see how the two red threads of Curved Geometry and of
Group Theory intersected and brought the mathematical language
and the weaponry needed by the new Physics of the XXth century to
maturity. In 1858 Enrico Betti, professor at the University of Pisa,
visited Gottingen, Berlin and Paris, making many important
mathematical contacts. In Gottingen Betti met Riemann and
developed friendship with him. In an attempt to improve his health,
Riemann made an lItalian visit in the autumn of 1863 and renewed his

Elie Cartan (1869 -1951)



friendship with Betti. Ricci Curbastro and Luigi Bianchi were both
students of Betti and learnt from him about Riemann ideas on
curved manifolds. During their stays in Germany, respectively in
Munich and in Gottingen, they absorbed Klein's views on the role
of groups in geometry and certainly they became early acquainted
with Lie's work on Lie algebras. The French tradition, going back to
Galois, on whose theory Betti himself had worked extensively, got
mixed with the German tradition originating from Gauss' work on
curved surfaces and brought the Italian Masters of the New
Differential Geometry to that top at world-level that allowed them
to pave Einstein's path toward General Relativity.

Bianchi, Ricci and Levi Civita: from 1902 to 1941

Bianchi died in 1928 and he is buried in the Cimitero
Monumentale, Piazza dei Miracoli of Pisa. Since the later 1880.s up
i / N N > to the end of his life he was an extremely prominent and influential
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mathematician of the then flourishing Italian School of Geometry.
In 1904 Bianchi was member of the committee appointed by the
Academia Nazionale dei Lincei to select the winning paper for the Royal Prize of Mathematics. Ricci’s

Tullio Levi-Civita (1873-1941)

ambitions on that Prize had already been manifested some years before, when he presented his works to
the committee then headed by Eugenio Beltrami. Notwithstanding Beltrami’s very favorable impressions,
the final verdict of the jury on the relevance of tensor analysis had been hesitating and the Prize had not
been attributed. Similar conclusion obtained the competition of 1904. Luigi Bianchi showed a great
appreciation for the mathematical soundness and vastity of Ricci’'s methods but concluded that tensor
analysis had not yet demonstrated its relevance and essentiality. He utilized Kronecker’s words to say that
he preferred new results found with old methods rather than old results retrieved with new, although very
powerful, techniques. This sentence can be compared with the Poincaré sentence reported by Levi-Civita
and Ricci at the beginning of their 1899 paper. These events are moreover surprising in view of the fact
that two years before, in 1902, Bianchi had published his paper containing those identities on the Ricci
tensor for which his name is mostly remembered. The Royal Prize for Mathematics, denied to Ricci
Curbastro, was attributed few years later, in the 1907 edition, to Ricci’s former student Tullio Levi Civita, by
a committee that once again included Luigi Bianchi, together with other distinguished mathematicians such
as Vito Volterra and Corrado Segre. This time the usefulness of the tensor methods had been made
absolutely undoubtable by the vastity of Levi-Civita’s results. Although a little bit dismayed by the failure to
get the Royal Prize, Ricci Curbastro ended his life in 1925 surrounded by the appreciation of his colleagues
and of his fellow citizens both as a scientist and as a politician. Indeed he was nominated member of
several academies, including the most prestigious one, that of Lincei and also occupied positions in the local
administration of his native city, Lugo di Romagna. On the contrary his genial student Levi-Civita, who was
professor at the University of Rome La Sapienza, notwithstanding the Royal Prize and other honors,
suffered, under the fascist racial laws of 1938, the removal from his chair because of his Jewish origin.
Depressed and completely isolated from the scientific world he died from sorrow in 1941. It is a luminous
shot in a dark and barbarous time that when he was removed from his Chair at la Sapienza, Levi-Civita was
offered a chair by the Academia Pontificia.



