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LECTURE 1:       D=11 SUGRA 

Introduction 



Constructing D=11 SUGRA, alias M-theory 

We start from the multiplet derived in his lectures by Bernard utilizing   

on-shell state counting 

In the first column of the table we mention the representation of the Lorentz group 

 induced by the helicity representation of SO(9) 

There is another way of arriving at the same field content that is more geometrical and 

not only tells us the states but also the generalized gauge symmetries and provides the 

tools to obtain all the interactions, namely the field equations.    

FREE DIFFERENTIAL ALGEBRAS = needed generalization of the concept  

of (super) Lie Algebras  



All higher dimensional supergravities and in particular the maximal one in D = 11 are 

based on the gauging of a new type of algebraic structure named Free Differential 

Algebras.  What goes under this name was independently discovered at the 

beginning of the eighties in Mathematics by Sullivan and in Physics by R. D’Auria & P.F. 

Free Differential Algebras (FDA) are a categorical extension of the notion of Lie algebra  

and constitute the natural mathematical environment for the description of the algebraic  

structure of higher dimensional supergravity theory 

The reason is the ubiquitous presence in the spectrum of supergravity 

theories of antisymmetric gauge fields (p-forms) of rank greater than one 

The very existence of FDAs is a consequence of the Chevalley cohomology 
of ordinary Lie algebras and Sullivan has provided us with a very elegant 

classification scheme of these algebras based on two structural theorems rooted  

in the set up of such an elliptic complex. 



Excursus on homology 

All the curves A, B, C are closedbecausetheyneitherhavea beginning nor an ending. 

Indeedtheyare loops. Thereisa differencebetweenA,B and C. Ifyoucutthe surfacealongA 

or B, itdoesnotsplit in twoparts. HenceneitherA, nor B are the boundary of a region. 

Ifyoucutthe surfacealongC itsplitsin twoparts 𝑅1 𝑎𝑛𝑑 𝑅2. Hence C is the boundary of 

thesetworegions.  Everyboundaryisclosedbutnotallcurves(or surfaces) are boundaries. 

THIS IS HOMOLOGY in a nut-shell 



Excursus on  

Cohomology 



Homology or Cohomology classes are 

equivalence classes 

is  



The isomorphism between the two descriptions  of the Lie algebra is 

provided by the duality relations: 



The Chevalley complex 





Consider a formal set of exterior forms                labeled by the index A and by the 

degree p, which may be different for different values of A. Given this set of p-forms we 

can write the corresponding set of generalized Maurer Cartan equations as follows: 

The generalized Maurer Cartan equations are consistent if and only if 

  is satisfied.   These are the generalized Jacobi identities. 
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LECTURE 1I:         D=11 SUGRA  

Continuation 



Classification of FDA and the Analogue of 

Levi Theorem: Minimal Versus 

Contractible Algebras 

A minimal FDA is defined by 

This excludes the case where a (p + 1)-form appears in the generalized Maurer Cartan 

equations as a contribution to the derivative of a p-form. In a minimal algebra all non-

differential terms are products of at least two elements of the algebra 





31 years ago 



The second structural theorem proved by Sullivan deals with the structure of minimal 

algebras and it is constructive. 

The most general minimal FDA M necessarily contains an ordinary Lie subalgebra G ⊂ M 

whose associated one-form generators we can call eI 



An iterative process 



Relative Cohomology 





The existence of the 3-form and 6-form gauge field and hence of M2 and M5 

branes that couple to them is a cohomological yield of the SuperPoincaré Lie 

Algebra in D=11.  It is the same for the other maximal supergravities in D=10 



p-form content of the M-theory FDA 

The generators eI 

The new generators 



The complete FDA 

Poincaré super Lie Algebra 

curvatures 

The new generators 







The principle of rheonomy was introduced by 

D’Auria and P.F. in a paper of 1979 [22], formalizing 

a previous idea of Ne’eman and Regge [23] 



In its strong formulation, used so far, horizontality requires that the components of the 

curvatures should be zero in the vertical directions.  A weaker formulation of the same idea 

is easily deemed of: one could just require that the vertical components should just be 

dependent on the horizontal ones, in particular linear combinations of the latter. 

This very simple idea is the principle of rheonomy. 



Fibre Bundles in a few pictures 

Transition  

functions 



 Belong to a Lie Group G (the structural group) 

 G acts as a group of transformations on the standard 

fibre F 

 When F=G is the Lie group itself we have a Principal 

Bundle 

 Principal Bundles are the ancestors of an infinite tower of 

associated vector bundles, one for each linear 

representation of G. 

 

The transition functions…….. 



In Physics, all matter fields are sections of a vector bundle associated 
to a Principal Bundle 



Let P(M, G) be a principal fibre-bundle. A connection on P is a rule which 

at any point u ∈ P defines a unique splitting of the tangent space Tu P 
into the vertical subspace Vu P and into a horizontal complement Hu P 

The algorithmic way to 

implement the splitting rule 

advocated by the Ehresmann 

definition is provided by 

introducing a connection  

one-form A which is just a Lie 

algebra valued differential one-

form on the bundle P 



The principle of 

rheonomy is 

reminiscent of the 

Cauchy-Riemann 

equations satisfied by 

the real and imaginary 

parts of analytic 

functions.  

Hence it encodes a sort 

of analyticity condition 

for the 

superconnections that 

constitute the field 

content of supergravity 

theories. 



The Bianchi Identities 

Luigi Bianchi 

1856-1928 



The rheonomic solution of Bianchi.s 



The field equations = integrability conditons 

Since there are no auxiliary fields and the supersymmetry algebra closes only on-shell the 

rheonomic parameterization of the curvatures yields thee full result. Field equations, 

namely dynamics, follows directly from the Bianchi identities. I do not need the action 

which in any case exists. 
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LECTURE 3 : Chern Simons N=1 

Gauge Theories in D=3 



A case with auxiliary fields 





In rigid supersymmetry we do not have to find a rheonomic parameterrization 

for the extended super Poincaré curvatures. They are all zero! 

We have to find a rheonomic parameterization of the curvatures 

(derivatives) of matter fields. 







The gauging of isometries is obtained modifying the natural Levi Civita connection of the 

Kaehler manifold 

THE RHEONOMIC PARAMETERIZATION OF MATTER CURVATURES 



It is a long matter to write the complete rheonomic lagrangian and even a longer task  

to determine it.  Yet it is just a boring but straightforward algorithm.  



Some fields are immediately eliminated through their own algebraic  equation  



Note that e,  and fI are the coefficients of separate off-shell supersymmetric invariants 

The other terms of the lagrangian 



Some physical fields become 

lagrangian multipliers and 

can be eliminated by their 

eq. s of motion. 



Let us consider what happens in the sector of the scalars 
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LECTURE 4 :  Sasakian manifolds 



Let us now go  

back to geometry 

Sasakian Manifolds & Orbifolds 



We consider now holography 

for M2 branes.  

We will consider solutions of D=11 Sugra that can be 

interpreted as M2-branes where we have a d=3 world sheet 

and a complementary 8 dimensional space that is the metric 

cone over a Sasakian compact space in 7-dimensions. 

The notion of Sasakian manifolds we explain  

in the next slide.  

Their geometrical characterization is what 

ensures that on the brane world-sheet we have 

an N=2 gauge theory  







Relation with AdS compactification of D=11 

Supergravity 



Sasakian homogenous 7-manifolds 



The role of algebraic geometry 
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LECTURE 3 : M2-brane solutions 



A triple of complementary viewpoints 



The triple Kingdom 
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LECTURE 6 :  The McKay correspondence & 

the Kronheimer construction 



Based on the following work  

 Recent work: 
 U. Bruzzo, A. Fino, P. Fré ArXiV:1710.01046 [hepth] 

 P. Fré, P.A. Grassi arXiv:1705.00752 [hepth] 

 P. Fré, arXiv:1601.02253  

 Previous work 
 D. Fabbri, P.Fré, L. Gualtieri, C. Reina, A. Tommasiello, A. Zaffaroni, A. 

Zampa, hepth/9907219 

 D. Fabbri, P. Fré, L. Gualtieri, P. Termonia hepth/ 9905134  

 M. Billò, D. Fabbri, P, Fré, P. Merlatti, A. Zaffaroni, hepth/0005219 

 M. Bertolini, V.L. Campos, G. Ferretti, P. Fré, P. Salomonson, M. Trigiante, 
arXiv:hep-th/0106186 

 D. Anselmi, M. Billò, P. Fré, L. Girardello, A. Zaffaroni  
 hep-th/9304135   

https://arxiv.org/abs/1601.02253
https://arxiv.org/abs/hep-th/0106186
https://arxiv.org/abs/hep-th/0106186
https://arxiv.org/abs/hep-th/0106186


Generalized Kronheimer 

construction 

For C3 / there is a generalized Kronheimer construction of the 
resolution which is just taylored to define the building blocks of  a gauge theory 
in D=3 or in D=4. This is based on a generalized McKay correspondence. 

In D=3 it will be a Chern Simons super gauge theory (N=2) corresponding to a 
M2 brane. In D=4 it will be an N=1 gauge theory associated with a D3-brane. 

 

 

Before we inspect the Kronheimer construction in the perspective of 

Physics let us summarize some  deep mathemtical results on the 

cohomolgy of the crepant resolutions of  quotient singularities. 



What we learn on cohomology from our 

friends mathematicians 

Since years 1990s to the present time there has been a quite extended activity 

in the mathematical community of algebraic geometers on the issue of crepant 
resolutions Y ! Cn/ (n=3 in particular) and on the McKay correspondence. Some 

theorems have been established. 

Important contributions have been given by: Y.Ito, M. Reid, A. Craw, S.S. Roan, D. 

Markushevich, I. Dolgachev, A. Degeratu, T. Walpuski and others. 

The main and for physicists most challenging theorem is due to Ito & Reid and it 

is based on the notion of age grading which we briefly recall in the next slide.  

 

 



The age grading 
Let  ½ SU(n) be a finite subgroup. Hence each of its group elements has a linear action on 

Cn: the Q-representation. 

In a finite group every element has a finite order p : p =Id (p=integer). Hence Q() can 

be diagonalized and its eigenvalues are r-th roots of the unity. They will be as follows: 

This introduces  age -vectors   

that are clearly properties of the entire conjugacy class C of   

AGE GRADING 



Ito Reid theorem 

Furthermore  and the representatives of H2k are actually 

(k,k)-forms 

The age grading is not an intrinsic property of , rather of its action on C3 

The many incarnations of the 

same integer number r 



Terminology and some conclusions 
There is a single class of age 0, namely the identity. The classes of age 1 are named junior 

classes. The classes of age 2 are named senior classes. 

Junior classes are in one-to-one correspondence with a basis of generators of H(1,1). 

These generators (1,1)
i  can be regarded as the first Chern classes of as many line-

bundles Li and these line bundles correspond to as many divisors Di. These are the 

components of the exceptional divisor DE created by the blow-up. When an (1,1)
i  has 

compact support, by Poincaré duality it is dual to an (2,2)
i  belonging to H(2,2).  

These are in correspondence with the senior classes. In other words the senior 

classes are in one-to-one correspondence with the compact components of 

the exceptional divisor. 

 

We have the 2-forms (1,1)
i  defined by the generalized Kronheimer construction 

and in one-to-one correspondence with the irreps of . What is their precise relation 

with the (1,1)
i  and the divisors Di  that are in one-to-one correspondence with the 

conjugacy classes? This pairing between irreps and conjugacy classes is of the 

outmost interest in Physics and we are working on its clarification. 



The scenario in 

Physics 

Let us review the Physics section of our 
stage: Gauge/Gravity correspondence and 

branes 



The AdS4/CFT3 scenario and some 

history: 1°   

Base of the 

cone 

metric cone CS Gauge  

Theory 

The fundamental issue is as 

follows. 

Let us consider M2-brane 

solutions of D=11 SUGRA. 

We have a Chern-Simons 

gauge theory on the D=3 

world volume. 

What can we learn on  

this CS theory, from the  

geometry of the transverse 

cone? 

Essentially everything is fixed by the cone geometry 

and there is a beautiful correspondence with the 

mathem. theory of 

singularity resolutions. 

 



The AdS4/CFT3 scenario and some 

history: 2°  

The classical case studied 18 years  ago in 

Fabbri et al hepth/9907219  corresponds to 

the case where the transverse cone is the 

metric cone on a Sasakian homogeneous 

manifold G/H 

At the beginning of the 80.s the Kaluza Klein spectra on 

had been extensively studied. After the advent of the AdS5 /CFT4 correspondence it 

was natural to study the AdS4 /CFT3 correspondence utilizing the ample lore 

accumulated 15 years before.  The Torino & Sissa group worked on that in the years 

1998-2000. 



M2-brane solution of D=11 SUGRA 
The  metric in D=11 

The 3-form 

The harmonic function in d=8 

where 

and define 



More precisely 
Let us consider the harmonic function as a map 

This introduces a foliation into a one-parameter family of 7-manifolds 

In order to have the possibility of residual supersymmetries we are interested in cases 

where M8 is actually a Ricci-flat Kaehler  4-fold K4 

Projection  Inclusion into a higher dimensional 

algebraic variety 



The N=8 case with no singularity  

The near horizon limit produces the standard solution of D=11 SUGRA 

This leads to  the isometry group  Osp(8|4) and to a free superconformal field 

theory on the M2 brane world volume, namely the Dirac singleton of Osp(8|4),  

with 8 bosons + 8 fermion degrees of freedom. The Kaluza Klein states are 

organized into short supermultiplets of Osp(8|4) that can be derived with purely 

group theoretical techniques. 



The singular orbifold cases 
Using the Hopf fibration of the 7-sphere 

We have 

We distinguish three cases 

Where   is a finite subgroup of SU(4) with a linear holomorphic action on C4 



Three cases  

  A)  

 

 

HyperKaehler quotient, N=4 susy in d=3 (McKay corr.) 

 B) 

 

 

Kaehler quotient, N=2 susy in d=3 

 C)  

Resolution of Kleinian  

singularities à la Kronheimer 

Generalized  Kronheimer construction 

and McKay corr. 

Very little is known so far. 



Phys.       Math.  1     1 map 



The map 

Geometry Chern Simons Gauge Theory 

 S =Hom(Q£ R,R) linear data,   dimC(S) =3 || 

 

 G =quiver group (see later).  F is the maximal 
compact subgroup thereof. 

 

 The dimension is dim F = || -1 

 

 The moment map  : S ! F
* 

defines || -1 functions PI(q) that enter  

the Kaehler quotient construction 

 

 one has to lift to level I>0 the moment maps 
associated with the center  

 

 One needs a quadratic constraint pÆ p = 0 that 
cuts a locus V||+2 of dimension ||+2: 

 

 The Kaeher quotient of V|+2|  with respect to 
F  is the minimal crepant  resolution M ! 
C3/ 

  

 S = Kaehler manifold of the Wess-Zumino 
multiplets (flat). 

 

 F   is the gauge group of the CS theory 

 

 The dimension is dim F = || -1 

 

 The functions PI(q) define the D terms and 

enter the formula for the scalar potential  

 

 The level parameters I  are the Fayet Iliopoulos 
parameters  

 

 The equation pÆ p=0 defines a universal cubic 
superpotential W   

 

 The smooth manifold M is the space of vacua of 
the gauge theory 

 

 

 

 

 

 

 

 



A flash of the Chern Simons super 

gauge theory 

= gauge multiplets 

= Wess Zumino multiplets 

General Form derived first in 1999 by 

D. Fabbri, P. Fré, L. Gualtieri, P. Termonia 

hepth/ 9905134 . 

Mechanism of integration of the gauge 

multiplet that leads to the ABJM and 

Gaiotto forms derived first by  

M. Billò, D. Fabbri, P, Fré, P. Merlatti, A. 

Zaffaroni, in 2000 hepth/0005219 

In present geometrical notation 

written by P. Fré and P.A. Grassi in 

arXiv:1705.00752 [hepth] 

 

 

 



Elimination of the gauge multiplet fields 

The scalars and the fermions in the gauge multiplet have algebraic field equations and 

can be integrated out , similarly for the WZ auxiliary fields. 

Identification of non 

dynamical scalars. 

Identification of 

non dynamical 

gauginos 



The final form of the scalar potential 

The manifold of extrema of the scalar potential coincides with the minimal crepant 

resolution of the singularity  C3/ according with the generalized Kronheimer 

construction based on the generalized McKay correspondence.   

Indeed since the potential is a sum of squares the extrema are defined  by  

pÆ p =0 

Furthermore gauge invariance implies that we have to consider only orbits of the 

gauge group and this completes the Kaehler quotient procedure.  



The diagram of the smooth resolution 

in case A) 

qK  is the Kaehler quotient with respect to the gauge group. 

Altogether we have a HyperKaehler quotient 

It is convenient to split the HK quotient into two steps in order to compare with the 

case C3/ 



The diagram of the smooth resolution in 

case B) 

The intermediate step, just as in case A) is a Kaehler quotient, yet the starting point 

variety  V||+2 has a different definition.  From the physical viewpoint we have N=2 rather 

than N=4 susy and the superpotential is not defined by the holomorphic moment maps, this 
corresponds mathematically to the fixed equation pÆ p = 0 

that amount s to identifying V||+2 with a certain orbit with respect to the quiver group G, 

actually the compactification of the gauge group F: 

We see later what the locus  L is. 



pÆ p =0 

equation 
Kaehler 

quotient 

Blowup 

= 

A visual scheme 



The McKay correspondence for   

In finite group theory we have the decomposition of any rep. D into irreps D 

Let Q be the defining  rep. of   ½ SU(2) 

Miracolous properties the matrix   

c = 2 – A 

It is the extended Cartan matrix  of  the Lie 

algebras     Ak, Dk+2 , E6, E7, E8 

The isomorphic ADE classification of Kleinian groups  

and semisimple Lie algebras is known.  

The Coxeter numbers coincide with the dimensions of  

irreps 



McKay corr. and the Kronheimer 

construction of ALE manifolds 

Define a space P  of pairs  p= (A,B) of complex || £ || matrices.  Define the action of 

the group  on P 

where R() is the regular representation and Q  the defining representation. 

In intrinsic notation      

Introduce the  invariant subspace of P  

The space S  is a flat Kaehler manifold with complex dimension 2|| which encodes (in 

Physics) the Wess-Zumino multiplets of the CS theory (actually) hypermultiplets 

since susy will be N=4. 



Why the dimension of S is 2||? 

The answer is:  

1. McKay correspondence 

2. Regular representation  

3. Schur’s Lemma 

Actually the space S is a flat HyperKaehler manifold with a triplet of Kaehler 

forms arranged into a quaternion 

This allows to perform a HyperKaehler 

quotient with respect to a suitable gauge 
group F  



The gauge group and the quiver group 

gauge group 

quiver group 

The gauge group is the maximal compact subgroup of the quiver group, the latter being the 

complexification of the former. The real dimension of the gauge group is ||-1, the complex dimension 

of the quiver group is the same. We have the triholomorphic moment  map, well known in 

supersymmetric  gauge theories (D-terms) 

 
dual of the gauge Lie algebra 

real moment maps 

holomorphic moment maps 



The Discreet Charm of the integer r 
The integer r counts  several  distinct things at the same time 

1. The number of non trivial irreps of . 

2. The number of non trivial conjugacy classes of . 

3. The dimension of the center z[F ] of the gauge Lie algebra. 

4. Hence the number of Fayet Iliopoulos parameters in the CS 

supergauge theory. 

5. As we will see also the number of tautological holomorphic 

bundles on the resolved variety: M       C
n/ (n=2,3) 

6. In the case n=2 (ADE) the rank of the semisimple Lie algebra 

corresponding to .  

The resolved smooth manifold ALE is obtained as the HyperKaeler quotient 
of S by F 

where  



n=3 generalization of the McKay corr. 

and Kronheimer construction STEP 1°  

Next let  ½ SU(n). We have a generalized McKay  correspondence    

vector of irrep dimensions 

generalized 

extended Cartan 

matrix 

fundamental property 

For n=3 we introduce a space P of triplets of ||£ || matrices  



n=3 generalization of the McKay corr. 

and Kronheimer construction STEP 2°  

Similarly we define the invariant subspace 

where the group action is 

Because of the McKay relation we have 
The space S is a flat Kaehler manifold 

of dimension 3||. It accomodates the 

WZ multiplets of the N=2 CS gauge 

theory. So there are no holomorphic 

moment maps but we can have a 
superpotential W  the vanishing of 

whose derivatives provides holomorphic 
constraints. 



n=3 generalization of the McKay corr. 

and Kronheimer construction STEP 3°  

How can we step down from 3|| complex dimensions to 3-dimensions? 

The gauge group  F has ||-1 generators and the corresponding Kaehler quotient  

kills ||-1  complex parameters.  Hence the starting point should be a variety  

with complex dimensions || +2. 

Question: what is the analogue of holomorphic moment map equation? 

Answer:  it  is  

The general solution to this 

constraint is given by a variety 

V||+2 that can be seen as the 

quiver group orbit of a special 3-

dimensional locus 



n=3 generalization of the McKay corr. 

and Kronheimer construction STEP 4°  

The locus L is easily seen to be  3-dimensional and we have 

Hence L describes the 

singular orbifold C3/ 

Introducing the orthogonal decomposition 



Other characterizations of the space  

 

At the moment we are studying other possible characterizations of this variety 
 as a quotient  of Cn with respect to some C* £ ...£ C* 

 

It is an open problem that may lead to new visions 



The moment map equation 
The solution of the singularity resolution problem is finally reduced to an algebraic 

equation for the coset element 

Such that 

Typically that above is a system of algebraic equations of higher order. In few 

cases one can reduce it to order 4°, 3°  or 2° obtaining solutions by radicals. 



The tautological bundles 
From the coset element V we extract a hermitian matrix  

that is the fiber metric on the direct sum 

of  r  tautological bundles  that, by construction,  are holomorphic  vector bundles with 

rank equal to the dimensions ni of the  r  irreps of  : 

Provided we are able to solve the moment map equation we can evaluate the first Chern 

classes of these bundles 



One simple master example 

generated by 3 =1 

Following the generalized Kronheimer construction one arrives at the following system of 

algebraic equations for the entries of the H-matrix (moment map equation) 

where 



Thanks Cardano & T artaglia! 
The moment map equation is solvable by radicals! 

We can explicitly calculate the (1,1)
1,2 forms 

Introducing the intersection integral  

We find 



Another case under investigation: 

The moment map equations 

Generator of  Z4 



Predictions from Ito-Reid Theorem 

age-vectors  

junior compact 

junior non compact 

senior 

Poincaré duality 

since we have  

a compact support 

(1,1)-cocycle there 

must be also a 

(2,2)-cocycle 

Here we have a complete illustration. Z4 has 3 non trivial irreps hence there are three 

tautological bundles and three 1,1 closed forms. Yet we expect only two 2-cycles in 

homology since we have only 2 junior classes. In the correspondence line-bundles divisors 

only one compact divisor and one non compact one.There is a linear relation between the 

cohomology classes of the three 1,1 closed forms. 



Let us retrieve these predictions 

from the toric description. 

The lattice of invariants 

Basis of invariant Laurent monomials 

The dual lattice N  

Age  vectors of the two junior  classes 

This is not a fortuitous coincidence.  Because  .......  



Toric description  
A complex n-dimensional toric variety is described by a fan of rays  ri in Rn  

that define a collection of maximal convex cones  i  and each cone  is associated with 

an open chart U  forming the atlas that covers the variety. 

In each chart U  the coordinate ring  

is given by  

Local Coordinates in chart  U   

This is an abstract notation to say something  simple.  We simply have a prescription 

how to write in each chart the local coordinates u,v,w   

 in terms of invariant indipendent monomials of the original coordinates  of  



Procedure 
 Define the invariant lattice M 

 Derive the direct lattice N as the dual of N 

 Introduce the fan  of rays and the cones i 

 Consider the maximal cones i contained in the fan  

 Construct the dual cones  v
i and the associated open 

charts. The transition functions are given and one has the 

atlas covering the toric variety 

QUESTION: What is the fan of the resolution?  

ANSWER: One starts from the fan of C3 and adds..... see next 

slide 



The fan and the cones for   

Which points of the N lattice lie on the face whose end points are e1,2,3 ? 

The corresponding rays have to be added to the fan. They are always the junior classes 

age vectors! MIRACLE 



Exceptional Divisor 
The final outcome of the construction is the following atlas of open charts 

In charts  1,2,3  the locus w=0 is the blowup of the singular point  x=y=z=0. It is the 

compact exceptional divisor. 

In charts 4 same   locus  is given by v=0 

We are studying the topology of the exceptional divisor and we have determined that is the 
second Hirzebruch surface in P2 £ P1 



The Chamber Structure 
In the bulk the Kaehler 

quotient always gives the 

complete smooth resolution. 

On the walls there are 

degeneration or partial 

resolutions. In any case 

crossing a wall the periods of 

the tautological bundles 

change  

The blue line is the degeneration EH 

The red lines are the degenerations  

Cardano. 



The degeneration Y3 

The degeneration Y3 which is the model of what happens on the walls 

is the canonical line bundle over the weighted projective space P[1,1,2]. 

This space is singular. Hence it is a partial resolution. 

The degeneration EH 

This space is the smooth space C x Eguchi Hanson 



The resolved variety Y 

Y is topologically and analytically the total space of the canonical line bundle 

over the second Hirzebruch surface 



Conclusions 

 The final goal is to match the Kronheimer like construction (= 
gauge theory model) with the algebraic constructions of the 
resolved variety, in particular deriving the exceptional divisors 

 The compact exceptional divisors are where branes can be 
wrapped in M2 and D3 applications. 

 So far the toric description was helpful yet the goal is to 
consider also non abelian  cases. Ito-Reid theorem applies 
also to them. 

 In perspective we have new ABJM Chern Simons gauge 
theories and resolved fractional brane gauge theories in D=4. 

 The largest possible  is the simple group L168. The resolution 
C3\ L168 was constructed 22 years ago by Markushevich. It is a 
hypersurface in C4  


