Supergravity & Holography
Mini Course @ Vina del Mar

Pietro Fré

LECTURE I: D=11 SUGRA
Introduction



Constructing D=11 SUGRA, alias M-theory

We start from the multiplet derived in his lectures by Bernard utilizing
on-shell state counting

Table 6.2 Structure of the graviton multiplet in D = 11 supergravity

SO(1, 10) rep. # of states Name
(2,0,0,0,0) 44 graviton
3. 535, %) 128 gravitino

(1,1,1,0,0) 84 3-form

In the first column of the table we mention the representation of the Lorentz group
induced by the helicity representation of SO(9)

There is another way of arriving at the same field content that is more geometrical and
not only tells us the states but also the generalized gauge symmetries and provides the
tools to obtain all the interactions, namely the field equations.

FREE DIFFERENTIAL ALGEBRAS = needed generalization of the concept
of (super) Lie Algebras



Free Differential Algebras

All higher dimensional supergravities and in particular the maximal onein D = | | are
based on the gauging of a new type of algebraic structure named Free Differential

Algebras. What goes under this name was independently discovered at the
beginning of the eighties in Mathematics by Sullivan and in Physics by R. D’Auria & PF.

Free Differential Algebras (FDA) are a categorical extension of the notion of Lie algebra
and constitute the natural mathematical environment for the description of the algebraic
structure of higher dimensional supergravity theory

The reason is the ubiquitous presence in the spectrum of supergravity

theories of antisymmetric gauge fields (p-forms) of rank greater than one

The very existence of FDAs is a consequence of the Chevalley cohomology

of ordinary Lie algebras and Sullivan has provided us with a very elegant
classification scheme of these algebras based on two structural theorems rooted
in the set up of such an elliptic complex.



Excursus on homology

All the curves A, B, C are closedbecausetheyneitherhavea beginning nor an ending.
Indeedtheyare loops.Thereisa differencebetweenA,B and C. Ifyoucutthe surfacealongA
or B, itdoesnotsplit in twoparts. HenceneitherA, nor B are the boundary of a region.
Ifyoucutthe surfacealongC itsplitsin twoparts R; and R,.Hence C is the boundary of

thesetworegions. Everyboundaryisclosedbutnotallcurves(or surfaces) are boundaries.
THIS IS HOMOLOGY in a nut-shell



Excursus on
Cohomology Rl

kerd; O Ima;_,
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Let us begin with Fig. 8.12. The fundamental idea underlying cohomology theory
is captured by that image. There is a sequence of spaces 2V'1, whose elements we
name the cochains® and there is a linear operator, named d (the exterior derivative)
that provides non surjective maps from each space 21 to the next one V+!:

[a,- L@l 4 o+l . vp e Q1 dg e 52“*“}
The fundamental property of the operator d is its nilpotency, namely it squares to
zero d* = 0. In practice this means that the kernel of the map ;. whose elements
we name the cocycles’ always contains the image Imd;_; of the previous map 9;_;.
namely the subspace of 2V'] formed by all those elements that can be written as d¢
for some ¢ belonging to U=, We name coboundaries the elements of Imd,_;.




Homology or Cohomology classes are
equivalence classes

Such a scenario occurs in various mathematical constructions and it is named an
elliptic complex € . The cohomology groups of the complex, usually denoted HU! (%)
are defined as the set of equivalence classes in which the subspace kerd; can be
partitioned with respect to the following equivalence relation:

Voll, gl € kerd; : o'~y iff (o' —y) elmd_,  (8.2.31)



Chevalley Cohomology

Let us consider a (super) Lie algebra G identified through its structure constants

vt s Which are alternatively introduced through the commutation relation of the

generators7
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or the Cartan Maurer equations:
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where e’ 1s an abstract set of left-invariant I-forms.

The isomorphism between the two descriptions of the Lie algebra is
provided by the duality relations:

e' (Ty) =6



The Chevalley complex

A p-cochain 2171 of the Chevalley complex is just an exterior p-form on the Lie
algebra with constant coefficients, namely:

[ .Q["’]=-Q/,,,_1p€[1/\---/\e’l’ ]

where the antisymmetric tensor £2, I, € /\" adj G, which belongs to the pth an-
tisymmetric power of the adjoint representation of G, has constant components.

Using the Maurer Cartan equations (6.3.2) the coboundary operator d has a pure
algebraic action on the Chevalley cochains:
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and Jacobi identities guarantee the nilpotency of this operation 9> = 0.



The coho-

mology groups H'”1(G) are constructed in standard way. The p-cocycles 2171 are
the closed forms 9271 = 0 while the exact p-forms, or p-coboundaries, are those
AlP! such that they can be written as APl = 5@lP=11 for some suitable (p — 1)-
forms @7~!1. The pth cohomology groups is spanned by the p-cocycles modulo

the p-coboundaries. Calling C? (G) the linear space of p-chains the operator 9 de-
fined in (6.3.5) induces a sequence of linear maps d,:

%) 2. (B Ly 2B 2 Q) Bs. cHB) s ... (6.3.6)

and we can summarize the definition of the Chevalley cohomology groups in the
standard form used for all elliptic complexes:

kerd,
Ima,_,

HP (G) = (6.3.7)



General Structure of FDAs and Sullivan’s Theorems

Consider a formal set of exterior forms {#1(”)} labeled by the index A and by the
degree p, which may be different for different values of A. Given this set of p-forms we
can write the corresponding set of generalized Maurer Cartan equations as follows:

N
A(y
dor) 4 Z c (p)B

n—I1

QBI(PI) e & szl QBn(I’n)

i(p1).-- B (Pi) 0

A : :
where ') By (p1)...B,(p,) AT€ generalized structure constants with the same symme-
try as induced by permuting the &s in the wedge product. They can be non-zero only
if:

i
p+1=> pi (6.3.16)
=1

The generalized Maurer Cartan equations are consistent if and only if d ([HA(/)) — ().
is satisfied. These are the generalized Jacobi identities.
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Classification of FDA and the Analogue of
Levi Theorem: Minimal Versus
Contractible Algebras

A minimal FDA is defined by

A(p) N
¢ B(p+1) =0

This excludes the case where a (p + |)-form appears in the generalized Maurer Cartan
equations as a contribution to the derivative of a p-form. In a minimal algebra all non-
differential terms are products of at least two elements of the algebra

On the other hand a contractible FDA 1s one where the only form appearing in
the expansion of 40P has degree p + 1, namely:

doP P =gt = 4oV =0



A contractible algebra has a trivial structure. The basis {#(?)} can be subdivided in
two subsets { AA(P} and {2 8P+D) where A spans a subset of the values taken by
B. so that:

SRt =

for all values of B and
dAA([)) — QA(I)-H)
Denoting by M the vector space generated by all forms of degree p < k and C*

the vector space of forms of degree k, a minimal algebra is shortly defined by the
property:

dMF c MF A MK

while a contractible algebra is defined by the property

A" e

In analogy to Levi’'s theorem, the first theorem by Sullivan states that: The most
general FDA is the semidirect sum of a contractible algebra with a minimal algebra.




T 31 years ago

Sullivan’s First Theorem and the Gauging of FDAs Twenty five years ago in
[16] the present author observed that the above mathematical theorem has a deep
physical meaning relative to the gauging of algebras. Indeed he proposed the fol-
lowing identifications:

1. The contractible generators 24P+ 4 ... of any given FDA A are to be phys-
ically identified with the curvatures.

2. The Maurer Cartan equations that begin with 24"+ are the Bianchi identi-
fes.

3. The algebra which is gauged is the minimal subalgebra M C A.

4. The Maurer Cartan equations of the minimal subalgebra M are consistently ob-
tained by those of A by setting all contractible generators to zero.



Sullivan’s Second Structural Theorem and Chevalley Cohomology
The second structural theorem proved by Sullivan deals with the structure of minimal
algebras and it is constructive.

The most general minimal FDA M necessarily contains an ordinary Lie subalgebra G ¢ M
whose associated one-form generators we can call €/
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7 Additional p-form generators Al”l of M
are necessarily, according to Sullivan’s theorem, in one-to-one correspondence with
Chevalley p + 1 cohomology classes I''’?T!l(¢) of G ¢ M. Indeed, given such a
class, which is a polynomial in the ¢/ generators, we can consistently write the new
higher degree Maurer Cartan equation:

[ APl L ple+lley — ] (6.3.23)

where APl is a new object that cannot be written as a polynomial in the old objects

(?.[.'



An iterative process

Considering now the FDA generated by the inclusion of the available A[*”] one
can inspect its Chevalley cohomology: the cochains are the polynomials in the ex-
tended set of forms {A, ¢} and the boundary operator is defined by the enlarged
set of Maurer Cartan equations. If there are new cohomology classes I'l7*l (e, A),
then one can further extend the FDA by including new p-generators Bl”! obeying
the Maurer Cartan equation:

[ BBU)]—I—F[‘UJFI]((?,A) :0]

The iterative procedure can now be continued by inspecting the cohomology classes
of type I''P*! (e, A, B) which lead to new generators Cl”! and so on. Sullivan’s
theorem states that those constructed in this way are, up to isomorphisms, the most
general minimal FDAs.



Relative Cohomology

To be precise, this is not the whole story. There is actually one generalization that
should be taken into account. Instead of absolute Chevalley cohomology one can
rather consider relative Chevalley cohomology. This means that rather then being
G- singlets, the Chevalley p-cochains can be assigned to some linear representation
of the Lie algebra G. In this case (6.3.4) is replaced by:

Qelpl — Q})‘I_..[pel' A---ANelp

where the index « runs in some representation D:
(04
D:T; — [D(TD]",

and the boundary operator is now the covariant V:

[ V_QO([I)] — g olp] A 2 [D(T])]aﬂﬂﬁ[p] ]




Since V? =0, we can repeat all previously explained steps and compute cohomol-
ogy groups. Each non-trivial cohomology class I'*lP*!(e) leads to new p-form
generators APl which are assigned to the same G-representation as I"*lP+1(e).
All successive steps go through in the same way as before and Sullivan’s theorem
actually states that all minimal FDAs are obtained in this way for suitable choices
of the representation D, in particular the singlet.



The Super FDA of M Theory and Its Cohomological
Structure

The existence of the 3-form and 6-form gauge field and hence of M2 and M5
branes that couple to them is a cohomological yield of the SuperPoincaré Lie
Algebra in D=11. It is the same for the other maximal supergravities in D=10



p-form content of the M-theory FDA

1. the vielbein V¢,

2. the spin connection w®, The generators e
3. the gravitino .

The higher degree generators of the minimal FDA M are:

1. the bosonic 3-form AL, The new generators
2. the bosonic 6-form Al®!.



The complete FDA
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The new generators



The Minimal FDA of M-Theory and Cohomology

Setting T¢ = R = p =F = FU7l =0 in (6.4.2) we obtain the Maurer Cartan
equations of the minimal algebra M. In particular we have:
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The reason why the three-form generator AL does exist and also why the six-form
generator A!®l can be included is, in this set up, a direct consequence of the co-
homology of the super Poncaré algebra in D = 11, via Sullivan’s second theorem.



Indeed the 4-form I'*1(V /) defined in the first line of (6.4.10) is a cohomology
class of the super Poincaré Lie algebra whose Maurer Cartan equations are the first
three of (6.4.2) upon setting T¢ = Rab — o = 0. We have:

dr'™* v ¢)=0

and there is no @B1(V, ) such that T (V, ) = ddBLV, y).

The algebraic reason why I''*/(V, /) is a closed form is also rooted in Lie alge-
bra theory and can be expressed 1n intrinsic group-theoretical terms. It follows from
the following Fierz identity:

UATPY AP AT =0

The left hand side is a projection operator on the 11 irrep” out of the symmetric
product of four irreps 32. The reason why the result is zero is that in the Clebsch
Gordan expansion of such a four product the irrep 11 is not contained. Indeed we

have:

(32©32®32® 32)qmm = 1 @ 165 ® 330 462 & 65 & 429
B 4290 & 1144 & 17160 & 32604



The Principle of Rheonomy

The principle of rheonomy was introduced by
D’Auria and PF in a paper of 1979 [22], formalizing
a previous idea of Ne’eman and Regge [23]

D’ Auria, R., Fre, P.: About bosonic rheonomic symmetry and the generation of a spin [ field
in D = 5 supergravity. Nucl. Phys. B 173, 456 (1980)

Ne’eman, Y., Regge, T.: Gravity and supergravity as gauge theories on a group manifold. Phys.
Lett. B 74, 54 (1978)

The basic motivation to introduce such a concept was the geometrical in-
terpretation of local supersymmetry transformations at the basis of the newly found
theory of supergravity, which, at that time, was less than two year old. In this re-
spect the key problem is that supersymmetry transformations, as they were case
by case found in the early construction of supersymmetric theories, look similar to
gauge-transformations, yet their gauge-field vr,,, which ultimately encodes the spin
% particles, has not a horizontal field-strength and therefore is nor a proper con-
nection on a principal fibre-bundle.



In its strong formulation, used so far, horizontality requires that the components of the
curvatures should be zero in the vertical directions. A weaker formulation of the same idea
is easily deemed of: one could just require that the vertical components should just be
dependent on the horizontal ones, in particular linear combinations of the latter.

This very simple idea is the principle of rheonomy.



Fibre Bundles in a few pictures

0

be : T (U)CP>U,®F 7 od] (p,f)=p
e Bl (UﬂU)®F—>(UﬂU)®F Transition
TR ! : f 5 7 functions



The transition functions........

» Belong to a Lie Group G (the structural group)

» G acts as a group of transformations on the standard
fibre F

» When F=G is the Lie group itself we have a Principal
Bundle

» Principal Bundles are the ancestors of an infinite tower of
associated vector bundles, one for each linear
representation of G.



Section of a bundle

-y

—

The concept of section of a fibre-bundle is illustrated by the above picture. To every point p
of the base manifold a section s associates, in a continuous way, a point of the total space s(p) € P,
that must belong to the fibre over p, namely such that 7 (s (p)) = p. In the case of vector bundles
the section image s (p) of a base manifold point p is necessarily an r-dimensional vector, r being

the rank of the bundle
A frame over U is a set of r sections {sy, ..., s,} such that

{s1(2), ..., s,.(2)} is a basis for 7=!(p) for any p € U, having denoted by z’
the coordinates labeling the points of the base manifold in the chosen patch

In Physics, all matter fields are sections of a vector bundle associated
to a Principal Bundle



Ehresman’'s Connection

Let P(M, G) be a principal fibre-bundle. A connection on P is a rule which
at any point u € P defines a unigque splitting of the tangent space Tu P
into the vertical subspace Vu P and into a horizontal complement Hu P

The algorithmic way to
implement the splitting rule
advocated by the Ehresmann
definition is provided by
introducing a connection
one-form A which is just a Lie
algebra valued differential one-
form on the bundle P

1) VX e G

(1) Yge G
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The Bianchi Identities

From their very definition, by taking a further exterior derivative one obtains the
Bianchi identities which play an even more fundamental role in constructing super-

gravity theories then they played in constructing General Relativity:
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Luigi Bianchi
1856-1928




The rheonomic solution of Bianchi.s
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The field equations = integrability conditons
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Since there are no auxiliary fields and the supersymmetry algebra closes only on-shell the
rheonomic parameterization of the curvatures yields thee full result. Field equations,
namely dynamics, follows directly from the Bianchi identities. | do not need the action
which in any case exists.
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Rheonomic construction of matter coupled ./ = 2 gauge theo-
ries in D = 3

A case with auxiliary fields

The supergeometry of D = 3, .4 '=2 rigid superspace

D = 3, ./ —extended superspace is viewed as the following supercoset manifold:

ISO(1,2l.#) _ _ Z[1SO(1,2|.4)]
SO(1,2) SO(I?)XRM #—L)2

Y /s
M5 =

where ISO(1,2|.4") is the .# —extended Poincaré supergroup in three—dimensions. Its superalgebra
is the Inonii-Wigner contraction of the superalgebra Osp(.4#|4) spanned by the generators J,,. By, ¢'.
The central extension Z [ISO(1, )], which is not contained in the contraction of Osp(.47|4). is
obtained by adjoining to ISO(1 °| N) the central charges that generate the subalgebra R-" (V' —1)/2,
Specializing our analysis to the case .4 =2, we define the new generators:

0 = V2¢ =(q¢"—ig?)
§ 0° = V2igt =i(q' +ig?)
Z = ZM




The left invariant one—form Q on ;" is the following object:
QO —J"p, — i mn y ~ZN _ 37 NC 37
=€ Bn—50""Jn + Y0 —-yQ +‘BL.

The superalgebra ISO(1,2|N) defines all the structure constants apart from those relative to the central
charge that are trivially determined. Hence we can write:

dQ—QOQNQ = (v([(_’m — 0)’:; Ne' + Il,l//\ ’}’ml//‘{‘ ”// A ?/” P
_l ( do™ — 6Om A .m) il
e (dv 4 ! wnm A ll/( Ymn)

(d_ — 3(0’”” A ll/}/mn) Q
+(dB+iY Ay —iyAY)Z



Imposing the Maurer-Cartan equation d€2 — QA Q = 0 is equivalent to imposing flatness in super-
space, i.e. global supersymmetry. So we have

0
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In rigid supersymmetry we do not have to find a rheonomic parameterrization
for the extended super Poincaré curvatures.They are all zero!

We have to find a rheonomic parameterization of the curvatures

(derivatives) of matter fields.



The gauge multiplet

\
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The off-shell rheonomic parametrization of the vector multiplet curvatures, consistent with the
Bianchi identities is given below:

= FAMAS — W AP A — WAL A
— MY (FAY =P AY)
VAA = dA2 L AP = VdPe™ 4 VM9 y — FA 7y 0Dy
VALY = A2 4 [ hd™ = Ve = Ve — Fl s — DAy
VMA = dMA + (o MY = VM2 +igAl — g, A0
VD= dD* + [, D] = VubDle® + TV Vnldd — .7 " Vnd?

—i¥ [Ae, M]* —iw, [A,M]P



The chiral Wess Zumino multiplets

WZ. mult. = Z oy, A
N~ { / ~
complex scalars chiralinos complex aux fields

The complex scalar fields z' parameterize a Kihler manifold .#x whose geometry is determined by a
Kéihler potential % (z,Z) yielding as usual the metric:

[ gl'j‘* = 8,&’1“/%/]

The continuous isometries (if any) of this metric are generated by holomorphic Killing vectors &}, (z)
according to:

[ 7 7 4 e (2) ]

and the vector multiplets can be used to gauge such symmetries and make them local.

Additional essential items in the construction of the theory are the moment maps defined by the
following equation: . - . -
/\;\ . ig"/ 8_,-*37,\ 5 /\;\ . —ig"/ a/*c@l\



The gauging of isometries is obtained modifying the natural Levi Civita connection of the
Kaehler manifold

Ve = @7 4 Q{Ak;’\(,—')

Vi = ' +T ;% Dy =T+ %ok,
Vil = df AT T =T vtk
VA = d# 4T ;o8

THE RHEONOMIC PARAMETERIZATION OF MATTER CURVATURES
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The rheonomic lagrangian

$L,4/=2 _ ggaugf’ +$(‘/lii‘al

rheo rheo rheo
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rheo — rheo rheo rheo

cochiral Kah/er+ gsuperpmemial
rheo - rheo rheo

It is a long matter to write the complete rheonomic lagrangian and even a longer task
to determine it. Yet it is just a boring but straightforward algorithm.
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The space-time Lagrangian of the Maxwell-Chern-Simons the-
ory and some of its applications

The space—time lagrangian,
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Some fields are immediately eliminated through their own algebraic equation
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The other terms of the lagrangian
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In the above equation the vectors L‘(_ i = Loy r) project onto the r independent generators of the
center of the gauge Lie algebra Z(G). For each of these generators one can add a separately super-
symmetric invariant term, named Fayet [liopoulos term [53]. which is just linear in the corresponding
auxiliary fields D; = Q{; D*. Namely we have:

Note that e, o and f' are the coefficients of S€parate off-shell supersymmetric invariants




" =2 Pure Chern Simons Gauge Theory

When e = 0, the lagranian takes the following form:
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Some physical fields become
lagrangian multipliers and
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! eq. s of motion.
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Let us consider what happens in the sector of the scalars

1
MA — ZK‘AZ (@Z = f]@é)
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Let us now go
back to geometry

Sasakian Manifolds & Orbifolds



We consider now holography
for M2 branes.

We will consider solutions of D=11 Sugra that can be
interpreted as M2-branes where we have a d=3 world sheet
and a complementary 8 dimensional space that is the metric
cone over a Sasakian compact space in 7-dimensions.

The notion of Sasakian manifolds we explain
in the next slide.
Their geometrical characterization is what

ensures that on the brane world-sheet we have
an N=2 gauge theory




What sasakian means is visually summarized in the following table.

(153/17 = (d¢ —&’f’)z + gij* d7 @dz/

2 T 1000, o
dspu) = dr-+4e"rds,

base of the fibration projection 7-manifold metric cone
B - M € (M)
) VpeBs n'(p)~S ) )
Kihler K3 sasakian  Kihler Ricci flat K4
Sl
T M1 — K-




Altogether the Ricci flat Kahler manifold K4, which plays the role of transverse space to the M2-
branes, is a line-bundle over the base manifold K5:

T : Ky — K3
Vp € K n~'(p) ~ C*

All the manifolds listed in table 1 are sasakian in the sense described above. The so(8)-holonomy
mentioned in this table is the holonomy of the Levi-Civita connection of the metric cone € (.#7)
which can be easily calculated from that of the .#7-manifold relying on the following one-line con-
struction. Define the vielbein of € (.#7) in terms of the vielbein of .#7 in the following way:

Vo= dr
v’:{ = reR, (1.5)

V¢ = erd®
where (15'5//7 =Y _, B* 2 A% The torsion equation:

vt + QY Av' =0 (1.6)
where Q is the spin—connection of the metric cone, is solved by:

Q0B _—  poB
Q% = _2ergP

having denoted by %P the spin—connection of .7, namely dAB* + BB N BB = 0.



Relation with AdS compactification of D=11
Supergravity

According
to the summary of Kaluza—Klein supergravity presented in [37], Q' is the so(8)-connection whose
holonomy decides the number of Killing spinor admitted by the AdS4 x .#7 compactification of M-
theory. When this holonomy vanishes we have the maximal number of preserved supersymmetries.
When it is SU(3) C SO(8) we have .4 = 2. When it is SU(2) C SO(8) we might in principle expect
A =4, but we actually have only .4 = 3, as firstly remarked by Castellani, Romans and Warner in
1985.



Sasakian homogenous 7-manifolds

Holon.
A | Name Coset | Fibration
50(8) bundle
o | w SO(8) : s’ = P?
SO(7) - 1
VpelP;n ' (p)~S
(4
5 |yt SU(3)xSU(2)xU(1) SU(3 MLl = P2 x P!
~ SU(2)xU(1)xU(I) (3) 2 Vo1 I
VpeP-xP:n ' (p)~S
5 L1 | SU@)xsu@)xsu@)xu(l) SUG Q' = Pl ox P x P
Q U(1)xU(1)xU(1) () | | 1. 1 |
VpeP' xP' xP':a "' (p)~S
<5 SO(5) V32 £ M, ~ quadric in P*
2 V> S0(2) SU(3) o :
Vpe My.:n'(p) ~S
NO1O Ty p2
3 | NO-10 SU(3)xSU(2) SU(2) Vpe PP al(p)~S°
- SU(2)xU(I) ), 1.0 SU(3)
NO1O = U()=xU(1)
SU(3 <
L ¥PE U(I);b)(l) i !(p) ~ S




The role of algebraic geometry

In [11], it was emphasized that the fundamental geometrical clue to the field content of the su-
perconformal gauge theory on the boundary is provided by the construction of the Kihler manifold
Ky as a holomorphic algebraic variety in some higher dimensional affine or projective space V. plus
a Kiihler quotient. The equations identifying the algebraic locus in V, are related with the superpo-
tential W appearing in the ¢ = 3 lagrangian, while the Kihler quotient is related with the D-terms
appearing in the same lagrangian. The coordinates u.v of the space V, are the scalar fields of the
superconformal gauge theory, whose vacua, namely the set of extrema of its scalar potential, should
be in one-to-one correspondence with the points of K. Going from one to multiple M2-branes just
means that the coordinate u.v of V, acquire color indices under a proper set of color gauge groups
and are turned into matrices. In this way we obtain quivers.

[11] D. Fabbri, P. Fre’, L. Gualtieri, C. Reina, A. Tomasiello, A. Zaffaroni and A. Zampa, 3-D super-
conformal theories from Sasakian seven manifolds: New nontrivial evidences for AdS4/CFT3
Nucl. Phys. B 577 (2000) 547 [hep-th/9907219].
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A triple of complementary viewpoints

p=1 extended objects, the superstrings, move in a

target space M tracing a D=2 world-sheet >cM z\
The spectrum of light-superstring excitations contains

the quanta of a supergravity theory

_GpaN

Supergravity, is the
geometrical ﬁeld theory of
the ambient space M. It is
necessary to determine the
superstring action.
Superstrings deformm M
geomeltry: FEED-BACK

Besides p=1 fundamental
objects there are p>1 extended
objects, the p-branes, that are
solitons. On the p-brane world-
volume W live gauge fields




The triple Kingdom

Tu se’ certo il cantor del trino regno,
Tu lo spirto magnanimo e sovrano

Cui, quasi cervo a puro fonte, io vegno.
Giovanni Marchetti

D &

f ds

gQ{[,(,,.,:‘/‘\/g,_“,(x)i'/‘/\'*" dt +q/A,l(x)',g/t dt

—

N\

[A

1
dMa.\' — _Z

/ FFE,, d*x

JH(x) :q/5(4)(.x —x(r)) dt

Similarly we can vary the action .7,y with respect to the metric dg,, and this
yields a stress-energy tensor, also localized on the particle world-line, that provides

a source for the gravitational field in Einstein equation.



(A) If a field theory contains a gauge field that is a d-form All then, setting p =
d — 1, we can introduce a p-dimensional object which, by evolving through the

ambient D-dimensional space-time .#p, traces in this latter a d-dimensional
world-volume (see Fig. 7.1):

Wa C Mp

The dynamics of such an extended object, which we name a p-brane, is de-
scribed by an action given by a d-dimensional integral localized on the world-
volume #/;. Such a p-brane action is typically made of two terms

Dprane = YArea + ¢ [ A[d]
/&

the first term being the area of the world-volume or generalization thereof, the
second, often named the Wess-Zumino term, being the integral of the form Al

on the world-volume.
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Based on the following work

» Recent work:
U. Bruzzo,A. Fino, P. Fre ArXiV:1710.01046 [hepth]
P. Fré, PA. Grassi arXiv:1705.00752 [hepth]
P.Freé, arXiv:1601.02253

» Previous work

D. Fabbri, PFré, L. Gualtieri, C. Reina, A. Tommasiello,A. Zaffaroni,A.
Zampa, hepth/9907219

D. Fabbri, P. Fré, L. Gualtieri, P. Termonia hepth/ 99051 34
M. Billo, D. Fabbri, P, Fré, P. Merlatti,A. Zaffaroni, hepth/0005219

M. Bertolini,V.L. Campos, G. Ferretti, P. Fré, P. Salomonson, M. Trigiante,
arXiv:hep-th/0106186

D.Anselmi, M. Billo, P. Fré, L. Girardello,A. Zaffaroni
hep-th/9304 135



https://arxiv.org/abs/1601.02253
https://arxiv.org/abs/hep-th/0106186
https://arxiv.org/abs/hep-th/0106186
https://arxiv.org/abs/hep-th/0106186

Generalized Kronheimer
construction

For C3 /T" there is a generalized Kronheimer construction of the
resolution which is just taylored to define the building blocks of a gauge theory
in D=3 or in D=4.This is based on a generalized McKay correspondence.

73 i ve o Chavt Sinoiis super gzagz hecry (N=2) cois:msernding o a
M2 brane. In D=4 it will be an N= gause theory associater W|th 3 D3-brane.



What we learn on cohomology from our
friends mathematicians

Since years 1990s to the present time there has been a quite extended activity
in the:mathematical community of algebraic geometers on the issue of

and on . Some
theorems have been established.

Important contributions have been given by:

The main and for physicists most challenging theorem is due to Ito & Reid and it
is based on the notion of which we briefly recall in the next slide.



The age grading
Let I' C SU(n) be a finite subgroup. Hence each of its group elements has a linear action on
C: the Q-representation.
<1
Vyel | ~.2 = :
<n

"

Q(7)

In a finite group every element has a finite order p : yP =ld (p=integer). Hence Q(y) can
be diagonalized and its eigenvalues are r-th roots of the unity. They will be as follows:

21

ai] , p>a;,eN =1 ....n

1
This introduces age -vectors vV = I—j{ﬂl; ag,...,an}

) = o]

that are clearly properties of the entire conjugacy class C of y

1 T
age(y) = — ) a; AGE GRADING
P i=1



[to Reid theorem

Theorem 4.1 LerY — C° /T be a crepant I resolution of a Gorenstein 2 singularity. Then we have the following
relation between the de-Rham cohomology groups of the resolved smooth variety Y and the ages of I conjugacy
classes:

dim H** (Y) = # of age k conjugacy classes of I’

Furthermore dim g2+! (Y) =0 and the representatives of H2¥ are actually
(k,k)-forms

The age grading is not an intrinsic property of I', rather of its action on C3

r = dimZ[[Fr| center of the Lie Algebra
The many incarnations of the

same integer number r

of moment map

r = # of nontrivial r = # of nontrivial
[" conjugacy classes lL lL I["irred. represent.s

age grading, @
exceptional divisors

i)

@ first Chern classes of
tautological bundles



Terminology and some conclusions

There is a single class of age 0, namely the identity. The classes of age | are named junior
classes. The classes of age 2 are named senior classes.

Junior classes are in one-to-one correspondence with a basis of generators of H(®:V,
These generators Q(V; can be regarded as the first Chern classes of as many line-
bundles £; and these line bundles correspond to as many divisors Z,. These are the
components of the exceptional divisor 2, created by the blow-up.When an Q(-V; has
compact support, by Poincaré duality it is dual to an Q2>2); belonging to H=:2),

These are in correspondence with the senior classes. In other words the senior
classes are in one-to-one correspondence with the compact components of
the exceptional divisor.

We have the 2-forms @(*V; defined by the generalized Kronheimer construction
and in one-to-one correspondence with the irreps of ['.What is their precise relation
with the Q('1); and the divisors 2. that are in one-to-one correspondence with the
conjugacy classes! This pairing between irreps and conjugacy classes is of the
outmost interest in Physics and we are working on its clarification.




Let us review the Physics section of our
stage: Gauge/Gravity correspondence and
branes



The AdS,/CFT; scenario and some
history: 1°

The fundamental issue is as
follows.

Let us consider M2-brane
solutions of D=1 SUGRA.
We have a Chern-Simons
gauge theory on the D=3
world volume.

What can we learn on

this CS theory, from the
geometry of the transverse
cone!

My
Base of the

cone

Transverse cone D=8

C (M7)
metric cone
M2 brane

world volume
D=3

Essentially everything is fixed by the cone geometry
and there is a beautiful correspondence with the
mathem. theory of

singularity resolutions.



The AdS,;/CFT; scenario and some
history: 2°

The classical case studied |8 years ago in
Fabbri et al hepth/9907219 corresponds to
the case where the transverse cone is the

metric cone on a Sasakian homogeneous
manifold G/H

base of the fibration projection 7-manifold inclusion metric cone
B &I A7 — C (A7)
i VpeBs nl(p)~S§ 1) 0
Kihler K3 Sasakian Kihler Ricci flat K4
G
At the beginning of the 80.s the Kaluza Klein spectra on AdSy X (ﬁ) .

had been extensively studied. After the advent of the AdS_ /CFT, correspondence it
was natural to study the AdS, /CFT, correspondence utilizing the ample lore

accumulated |5 years before. The Torino & Sissa group worked on that in the years
$998-2000.



M2-brane solution of D=11 SUGRA

The metric in D=1
_2 3
dst; = H(y)~3 (d€" @ d€"nw) — H(y)3 (dsiy,)

where d‘s.?"-/[a — dyf Y d'yJ 9IJ(y)
The 3-form

ABL o H(y) ™1 (de* A dE¥ A dEP epp)

The harmonic function in d=8

1
r(y)°

Mg H('y) =0 and define Hy) =1 —

asymptotic flat limit

T — OC
r = 0 near horizon limit



More precisely

Let us consider the harmonic function as a map
This introduces a foliation into a one-parameter family of 7-manifolds

Vr € Ry . Mo(r) = Sj_l(l — fr_ﬁ) C Mg

In order to have the possibility of residual supersymmetries we are interested in cases
where Mg is actually a Ricci-flat Kaehler 4-fold K,

1
Ks &~ M, 2= K, Lﬁ v,
; !

Projection Inclusion into a higher dimensional
algebraic variety




The N=8 case with no singularity

C A=Id
cp3 <& st P& 4 ST ¢4

The near horizon limit produces the standard solution of D=11 SUGRA

AdS, x S’

This leads to the isometry group Osp(8|4) and to a free superconformal field
theory on the M2 brane world volume, namely the Dirac singleton of Osp(8|4),
with 8 bosons + 8 fermion degrees of freedom.The Kaluza Klein states are
organized into short supermultiplets of Osp(8|4) that can be derived with purely
group theoretical techniques.



The singular orbifold cases
Using the Hopf fibration of the 7-sphere

r - ST o Ccp3
Vy e CP3 : 77 1(y) ~ St
We have

CP3 - S’ Cone c4 A="7
[ [ [

Where T is a finite subgroup of SU(4) with a linear holomorphic action on C4

We distinguish three cases



Three cases
» A)

r C SU(2) C SU(2);®SU(2);; C SU(4)

HyperKaehler quotient, N=4 susyin d= cKay cofrj
B Resolution of Kleinian C ~ CQ C M
» B) singularities a la Kronheimer ? — 2 ? i G

[ C SU(3) C SU(4)N

Kaehler quotient, N=2 susy in d=3
eneralized Kronhei%er construcni@4 N ‘C3
4 C) and McKay corr. T C x e i MC

[ CSU(4) 4 = irred Verylittle is known so far.
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T here is a one-to-one map between the field-
content and the interaction structure of a D =
3, N = 2 Chern-Simons gauge theory and the
generalized Kronheimer algorithm of solving
quotient singularities C3/I_ via a Kahler quo-
tient based on the McKay correspondence. All
items on both sides of the one-to-one corre-
spondence are completely determined by the
structure of the finite group I and by its spe-
cific embedding into SU(3).



The map

» S =Hom(Qx R,R) linear data, dim(S;) =3 ||

» G =quiver group (see later). F is the maximal
compact subgroup thereof.

» The dimensionis dim F = |I'| -1

» The momentmap pu:Sp — F.*
defines |['| -1 functions ~(q) that enter
the Kaehler quotient construction

»  one has to lift to level {;>0 the moment maps
associated with the center

»  One needs a quadratic constraint pA p = 0 that
cuts a locusV p,, of dimension |I'[+2:

»  The Kaeher quotient of V-, ,; with respect to
Fy. is the minimal crepant resolution M, —
C3/T

S = Kaehler manifold of the Wess-Zumino
multiplets (flat).

F.- is the gauge group of the CS theory
The dimension is dim F. = |I'] -1

The functions ~/(q) define the D terms and
enter the formula for the scalar potential

The level parameters (; are the Fayet lliopoulos
parameters

The equation pA p=0 defines a universal cubic
superpotential W

The smooth manifold M, is the space of vacua of
the gauge theory




A flash of the Chern Simons super
gauge theory

2 1 R
Zesofr = —aTr (3’ N + S NGN ﬂ’) + (Egu* vz Y Vz") A" A el Epnp

| ol
6 Sir* " e A et A Erst

B . . "
+l._gff* (X” Ym er + IL Ynl V?Cé ) Ae A f?pgmnp

2
] - . -* ™ o /—A —A
(—EM"‘ (afkj\gjg*xf 2+ Ok gjg*xgx;) +< (}L }LE+}LCJLE) Kz
N * G | Form derived first in 1999 b
_|_1_( TN "}L‘“‘k"!) - eneral Form derived first in y
3\~ AT X RN ) 8 D. Fabbri, P Fré, L. Gualtieri, P Termonia

| i — s hepth/ 9905134 .
— .. J P T A1 P
T 6 (a’alﬂ/xfx + WAL X )) A e N em Emnp Mechanism of integration of the gauge
B = moa AP multiplet that leads to the ABJM and
V(M,D,#,2,2) &npe” N e N\ e Gaiotto forms derived first by
M. Billo, D. Fabbri, P, Fré, P. Merlatti, A.
{Aﬁ? Xn‘, AQ, M A, DA} = gauge multiplets Zaffaroni, in 2000 hepth/00052 9
In present geometrical notation
written by P. Fré and PA. Grassi in

{Z%? X%j H%} = Wess Zumino multiplets arXiv:1705.00752 [hepth]



Elimination of the gauge multiplet fields

The scalars and the fermions in the gauge multiplet have algebraic field equations and
can be integrated out, similarly for the WZ auxiliary fields.

1 I
MM = " (Ps — ¢rex)
< 1 N Identification of non
D/\ — _ ﬁ gij* n/\r kf— k{Z RZA (pr — (7 QIA) ~—— dynamical scalars.
(6}
- - l* — —_— +* - i*-
Ho= gl oW R =g ow
1 o 1 ~Identification of
N = = (N gij* X" kgz ; )\2\ — _ = N gij+x’" k% non dynamical
2a ' 2a ' gauginos

k% (z) = holomorphic Killing vector

A Killing metric



The final form of the scalar potential

~ 1 ek
V(2 = ¢ (OW 0 W g + m"= (Pp — ¢ €}) (Pe — ¢sey))
_ 1 i
mN=(z,2) = 22 N 20 ki k' gij*

The manifold of extrema of the scalar potential coincides with the minimal crepant
resolution of the singularity C3/I" according with the generalized Kronheimer
construction based on the generalized McKay correspondence.

Indeed since the potential is a sum of squares the extrema are defined by

o; WV O <mm=) pAp=0
Prn = (1€

Furthermore gauge invariance implies that we have to consider only orbits of the
gauge group and this completes the Kaehler quotient procedure.



The diagram of the smooth resolution
in case A)

1 - A
My & PxALEr ¥ PxVirp O c2xc?r

A
The map J; denotes the inclusion map of the
variety Virj4q in c2Ir|

K Virp1r — Vir4a /g Fr-1 = ALET

gK is the Kaehler quotient with respect to the gauge group.
Altogether we have a HyperKaehler quotient

[ALEF = C2|r|//HK]:|I_|—1J

It is convenient to split the HK quotient into two steps in order to compare with the
case C3/I"




The diagram of the smooth resolution in
case B)

-1 IdxqK IdxAp
M7 2~ Cx Yr al L CxXVir42 — C x c3Irl

The intermediate step, just as in case A) is a Kaehler quotient, yet the starting point

variety V., has a different definition. From the physical viewpoint we have N=2 rather
than N=4 susy and the superpotential is not defined by the holomorphic moment maps, this
corresponds mathematically to the fixed equation pA p =0

that amount s to identifyingV |, with a certain orbit with respect to the quiver group G,
actually the compactification of the gauge group Fy.

Dr — Ol’bitgl_ (Lr)

M ES

We see later what the locus L is.



A visual s

- pA p =0
-, equation

Kaehler
AT quotient

v -,
O o BF o Yy Y,




The McKay correspondence for r
In finite group theory we have the decomposition of any rep. D into irreps D,
Let Q be the defining rep.of I' C SU(2) A
T Y D = € auDy
p=1
— D 1
p— D
Q ® DI,L \_/ Auy ‘DV (L/L = E Z qg; Xz( )Xl(,’l)*
=1
9 =0 y ‘
The isomorphic ADE classification of Kleinian groups I’ Miracolous properties the matrix
and semisimple Lie algebras is known. - 28

The Coxeter numbers coincide with the dimensions of " |t is the extended Cartan matrix of the Lie
irreps
P algebras Ay, Dy, ,Eq E, Eg

|
— Eﬁf%

D2

. . F1=6 2
SO >3—9‘~5<§ A1 2 O
TS 995




McKay corr. and the Kronheimer
construction of ALE manifolds

Define a space 2 of pairs p= (A,B) of complex |I'| x |I'| matrices. Define the action of
the group I" on 2

—1
wer s (5) e (Rsaa )

where R(y) is the regular representation and £, the defining representation.
In intrinsic notation

P~ Hom(R,QR® R)

Introduce the I' invariant subspace of 2

S={peP/VyeTl,v-p=p} = Homr (R, 2 Q R)

The space S is a flat Kaehler manifold with complex dimension 2|I"| which encodes (in
Physics) the Wess-Zumino multiplets of the CS theory (actually) hypermultiplets
since susy will be N=4.



Why the dimension of Sis 2|I'|?
I. McKay correspondence
The answer is: 2. Regular representation

3. Schur’s Lemma

S = Ay pHom(C, C™)
M,V /

dime [Hom (R, Q® R)] = 2|l

Actually the space _S'is a flat HyperKaehler manifold with a triplet of Kaehler

forms arranged into a quaternion iK i)
- 1 © = Tr(dpiadp) = [ .~
i —iK y
K = —i|Tr(da"Ada)+Tr (a8 AdB)| = ig,5dg® A dgP
, _
s~ = g, B dg” @ dqﬁ This allows to perform a HyperKaehler

Q

2Tr(dAAdB) = Qaﬁ dg® Ad qB quotient with respect to a suitable gauge
group Z



The gauge group and the quiver group

r+1

Fr = ® U(ng,) ﬂ SU(|T|) sauge group
p=1
r+1

Gr = Q) GL(ny, C) () SL(I|,C) quiver group
p=1

The gauge group is the maximal compact subgroup of the quiver group, the latter being the
complexification of the former. The real dimension of the gauge group is |I'|-1, the complex dimension
of the quiver group is the same.We have the triholomorphic moment map, well known in
supersymmetric gauge theories (D-terms)

IJJ : SI_ ; ]R3 ® FF dual of the gauge Lie algebra

palp) = —i([A, AT+ (B, BY) ¥3
pg (@) = (1A, B)) Pt

T (3(p) f) o
Tr (11 (p) f4) lomaphic mament maps



The Discreet Charm of the integer r

The integer r counts several distinct things at the same time

|. The number of non trivial irreps of I'.

2. The number of non trivial conjugacy classes of I'.

3. The dimension of the center Z[F - ] of the gauge Lie algebra.

4. Hence the number of Fayet lliopoulos parameters in the CS
supergauge theory.

5. As we will see also the number of tautological holomorphic
bundles on the resolved variety: M, -€"/1" (n=2,3)

6. In the case n=2 (ADE) the rank of the semisimple Lie algebra
corresponding to I

The resolved smooth manifold ALE. is obtained as the HyperKaeler quotient

of Sr by Fr 1,2
Me=p" () ) Fr
were € € R3®3[Fr]*



n=3 generalization of the McKay corr.

<P 1°

and Kronheimer construction ST

Next let I' C SU(n). We have a generalized McKay correspondence
r+1

generalized

ORD; = EB A@Zj Dj E’%j — n(s?,j — AZ] extended Cartan
Jj=1

matrix

1N — {l, N1, ..., nfr} vector of irrep dimensions

(_:,n — 0 fundamental property

For n=3 we introduce a space P of triplets of |[I'|x || matrices

A
peEPr =HOM(R, QX R) = p = (B)
C



n=3 generalization of the McKay corr.
and Kronheimer construction STEP 2°

Similarly we define the invariant subspace
Sr = Homr(R,Q® R) = {pe Pr/VyeTl,y-p=p}

where the group action is R(y) AR(v™1)
vyel: ~:p=Q(\) | R(Y)BR(1)
R(v)CR(y™1)

Because of the McKay relation we have The space _S,is a flat Kaehler manifold

: . of dimension 3|I]. It accomodates the
Sr = P Ai jHom(C™,C") , multiplets of the N=2 CS gauge
1,7 theory. So there are no holomorphic
moment maps but we can have a
‘ superpotential A the vanishing of

dime S =3 Z nf — 3| |—| whose qerivatives provides holomorphic
- constraints.



n=3 generalization of the McKay corr.
and Kronheimer construction STEP 3°

How can we step down from 3|I'| complex dimensions to 3-dimensions!?
The gauge group £ has |[['|-] generators and the corresponding Kaehler quotient

kills [T'|-] complex parameters. Hence the starting point should be a variety
with complex dimensions |['| +2.

Question: what is the analogue of holomorphic moment map equation?
Answer: it is P A\ P = O

—  ijk _ l The general solution to this
0 = & P - pj consfraint is given b i
given by a variety
1} V|42 that can be seen as the
quiver group orbit of a special 3-

0 = [A,B] = [B.}.O] — [O, A] dimensional locus

V“—H_Q — Dr — Ol’bitgr (Lr)




n=3 generalization of the McKay corr.
and Kronheimer construction STEP 4°

Ao
Sr D Lr = {( Bg ) € Sr | Ag, Bg,Cp diagonal in natural basis of R}
Co

The locus L is easily seen to be 3-dimensional and we have

[-L_l (O) — Orb|tjE'|_ (LI_) Hence L describes the

singular orbifold C3/T°

Introducing the orthogonal decomposition

Gr = FraeKr
[Fr, Fr] € Fr ; [Fr,Kr] CKr ;| [Kr,Kr] C Fr

Dr = Orblt]:r (exp [Kr] - Lr)

. - wi(Z)=0 if f1 &3
WO N F = {ZEQXD[KF]'LF I ui(z) = ¢ if fiE?’}




Other characterizations of the space

Dr

At the moment we are studying other possible characterizations of this variety
as a quotient of C™ with respect to some C™ x ..x C

It is an open problem that may lead to new visions



The moment map equation

The solution of the singularity resolution problem is finally reduced to an algebraic
equation for the coset element

Y =expl[®] ; DPeKf

/| H0 0 0 0 \
0 *61@11'11}(111 0 :
0
\ 0 0 ﬁr@lmxm/
Such that

pu(V-Lr) = ¢

Typically that above is a system of algebraic equations of higher order. In few
cases one can reduce it to order 4°,3° or 2° obtaining solutions by radicals.



The tautological bundles

From the coset element < we extract a hermitian matrix

)

(| 91 0 0

0| %o :

H = N I I :
I $Hr—1| 0

\ 0O |...... 0 Hr

/

that is the fiber metric on the direct sum

r
R=@P R
1=1

of r tautological bundles that, by construction, are holomorphic vector bundles with
rank equal to the dimensions n; of the r irreps of I

Ri — M

VpEMC

=~ L(p) ~ C"

Provided we are able to solve the moment map equation we can evaluate the first Chern

classes of these bundles

oI

c1(R;) = - 90log[Det ()



One simple master example

c: e

4.3 1
a — vectors = {{0,0,0}, % {1,1,1}, . {2,2,2}}

Hence we conclude that the Hodge numbers

of the resolved variety should be

generated by Y = (

O O
O O
O O

Following the generalized Kronheimer construction one arrives at the following system of
algebraic equations for the entries of the H-matrix (moment map equation)

>(-14+7T3) = (-14+7T3
{ (T1T2 1)’ (TITQ 2)} — {Cl,CQ} where > = Z |Z'i



Thanks Cardano & T artaglia!

The moment map equation is solvable by radicals!
We can explicitly calculate the ®®%;> forms

: 2
@y _ ¢ (d . izidad A g5
Wiz’ = oo (dZLOg [’Y‘LQ(Z)] dz' Ndz' + dzzLog {'Y‘LQ(Z)] 2/Z'dz" A dz

Introducing the intersection integral

Lope = /M wél’l) /\wggl’l) /\wél’l)

We find

[;“1}(}"‘;’3:“} : "ﬁr“]:% [;‘]:}(),u’;’g:()] : J’EHZU

[;1:{],§QE{]} : j]l]:ﬂ (g]z{},;‘gz{” L Sy =10

F =)

(61>0,6>0) : A= (61>0,6>0) @ Sy =]



Another case under investigation: Toa

Generator of Z4

-
o O

=0 -~
[a—

The moment map equations

[ (5-x)(0n(s4) 4 (142)a3)

2 X1 X2X3 ) gl—g3
Xo+X3 X1 X3 (X2+X2) ) (A24A2 '
(X2+X5 X, ;((lxlz;z))( i+43) = Ci— G+ G

(—14+X37 ) (X2 (AT+43 ) +(XT+X3 ) AT) ) &
\ N X1X2X3




Predictions from Ito-Reid Theorem

age-vectors

1

c1 = Z {1_} 1-,. 2} junior compact

1 Poincaré duality
cHo = — {2_} 2, O} junior non compact |

4 since we have

1 a compact support
Cy — — {3.} 3,, 2} senior (1,1)-cocycle there

4 must be also a

(2,2)-cocycle

Here we have a complete illustration. Z, has 3 non trivial irreps hence there are three
tautological bundles and three w"! closed forms.Yet we expect only two 2-cycles in
homology since we have only 2 junior classes. In the correspondence line-bundles divisors
only one compact divisor and one non compact one.There is a linear relation between the
cohomology classes of the three ®"' closed forms.



Let us retrieve these predictions
from the toric description.

3 . .
The lattice of invariants M = {V e R3 v = @ m’ e.,Y, m’ € Z}
1=1
6\1/ = {1,-1,0} & I o .
eé — {032,_1} & T Basis of invariant Laurent monomials
ey = {002} & In T; =gyl T, =422 I3 =22
3 .
The dual lattice N N = MV = {v eR3|v= P e, ne Z}
=1
Vo7 — 5J
€, € = 0

el = {1,0,0}, € = 1{2,2,0}, € = ;{1,1,2}
\ J \ J
| |

Age vectors of the two junior classes

This is not a fortuitous coincidence. Because .......



Toric description

A complex n-dimensional toric variety is described by a fan of rays r; in R®
that define a collection of maximal convex cones G; and each cone G is associated with
an open chart U_ forming the atlas that covers the variety.

In each chart U_ the coordinate ring _ \V4
is given by ‘XO'?: T Spec C [J?: ﬂ M}

This is an abstract notation to say something simple. We simply have a prescription
how to write in each chart the local coordinates u,v,w

in terms of invariant indipendent monomials of the original coordinates of C3

Cone(a,b,c)

mal yﬂz ~43
bo b3

Uu

Local Coordinates in chart U_ U

Ly
$C1 Y2 23

w



Procedure
» Define the invariant lattice M

» Derive the direct lattice N as the dual of N
» Introduce the fan @ of rays and the cones o;

Consider the maximal cones G; contained in the fan @

v Vv

Construct the dual cones G'i and the associated open
charts. The transition functions are given and one has the
atlas covering the toric variety

QUESTION: What is the fan of the resolution?
ANSWER: One starts from the fan of C3 and adds..... see next
slide



The fan and the cones for

—et 4263

—el 422
2

e; = {1,0,0}, e = {0,1,0}, e3 = {0,0,1}
e = (—:1, e = —el + 262,, e3 = —e? 4+ 263

Which points of the N lattice lie on the face whose end pointsare e, , ., !

?
The corresponding rays have to be added to the fan.They are always the junior classes
age vectors! MIRACLE



Exceptional Divisor

The final outcome of the construction is the following atlas of open charts

Chart Xo; z = uodw , y—=Vodw , z— Jw
Chart Xo, = — \/_«.,/ LY = u oYW,z — Jw
Chart Xo; = — Yw .Y — uw , 2 — vyJw
Chart Xo, = — uy/v y — Vv .z — yJow

In charts 1,2,3 the locus w=0 is the blowup of the singular point x=y=z=0. It is the
compact exceptional divisor.
In charts 4 same locus is given by v=0

il

We are studying the topology of the exceptional divisor and we have determined that is the
second Hirzebruch surface in P? x P?



The Chamber Structure
In the bulk the Kaehler

S N quotient always gives the
- 1 S complete smooth resolution.

o On the walls there are

> degeneration or partial
resolutions. In any case
crossing a wall the periods of
the tautological bundles
change

LT

W
AR

A

Sy

' The blue line is the degeneration EH
e e The red lines are the degenerations
N7 Cardano.



The degeneration Y3

The degeneration Y3 which is the model of what happens on the walls
is the canonical line bundle over the weighted projective space P[I,1,2].
This space is singular. Hence it is a partial resolution.

The degeneration EH

This space is the smooth space C x Eguchi Hanson



The resolved variety Y

Y is topologically and analytically the total space of the canonical line bundle
over the second Hirzebruch surface

Let us give some details about the geometry of the second Hirzebruch surface F,. which appears as the compact
component of the exceptional divisor of the resolution ¥ — C3/Zj.
. . Ry |
Let (U,V) be homogeneous coordinates on P! and (X,Y,Z) homogeneous coordinates of P2.

Definition 5.1. The n-th Hirzebruch surface F, is defined as the locus cut out in P' x P? by the following equation of

degree n+ 1:
0= .2(UVXYZ) =XU"—=¥i" (5.1)



Conclusions

4

The final goal is to match the Kronheimer like construction (=
gauge theory model) with the algebraic constructions of the
resolved variety, in particular deriving the exceptional divisors

The compact exceptional divisors are where branes can be
wrapped in M2 and D3 applications.

So far the toric description was helpful yet the goal is to
consider also non abelian I" cases. Ito-Reid theorem applies
also to them.

In perspective we have new ABJM Chern Simons gauge
theories and resolved fractional brane gauge theories in D=4.

The largest possible I' is the simple group L,¢g. The resolution
C3\ L g Was constructed 22 years ago by Markushevich. It is a
hypersurface in C4



