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Setting the stage 



Group Structures 



The robust conceptual setup 



Phys.       Math.  1     1 map 



For C3 / there is a generalized Kronheimer construction of the 
resolution which is just taylored to define the building blocks of  a 
gauge theory in D=4. This is based on a generalized McKay 
correspondence. 

In D=4 we obtain an N=1 gauge theory associated with a D3-brane. 

 

 
Before we inspect the Kronheimer construction in the perspective of 
Physics let us summarize some  deep mathemtical results on the 
cohomolgy of the crepant resolutions of  quotient singularities. 

A resolution of a singularity 𝑿 → 𝒀  is crepant when the canonical bundle of X is the 

pull-back of the canonical bundle of Y. Hence if X = 
ℂ𝟑

𝜞
 is an orbifold, its canonical 

bundle is trivial and such is the canonical bundle  of the crepant resolution Y. Hence 

Y is a non-compact Calabi-Yau three-fold and admits Ricci flat metrics. 



Since the years 1990s to the present time there has been a quite 
extended activity in the mathematical community of algebraic 
geometers on the issue of crepant resolutions Y ! Cn/ (n=3 in 
particular) and on the McKay correspondence. Some theorems have 
been established. 

Important contributions have been given by: Y.Ito, M. Reid, A. Craw, 
S.S. Roan, D. Markushevich, I. Dolgachev, A. Degeratu, T. Walpuski 
and others. 

The main and for physicists most challenging theorem is due to Ito & 
Reid and it is based on the notion of age grading which we briefly 
recall in the next slide.  

 

 



The age grading 

Let  ½ SU(n) be a finite subgroup. Hence each of its group elements has a linear 
action on Cn: the Q-representation. 

In a finite group every element has a finite order p : p =Id (p=integer). Hence 
Q() can be diagonalized and its eigenvalues are r-th roots of the unity. They will 

be as follows: 

This introduces  age -vectors   

that are clearly properties of the entire conjugacy class C of   

AGE GRADING 



Ito Reid theorem 

Furthermore  and the representatives of H2k are actually 
(k,k)-forms 

The age grading is not an intrinsic property of , rather of its action on C3 

The many incarnations of the 

same integer number r 



Terminology and some conclusions 
There is a single class of age 0, namely the identity. The classes of age 1 are named 
junior classes. The classes of age 2 are named senior classes. 

Junior classes are in one-to-one correspondence with a basis of generators of 

H(1,1). These generators (1,1)
i  can be regarded as the first Chern classes of as 

many line-bundles Li and these line bundles correspond to as many divisors Di. 
These are the components of the exceptional divisor DE created by the blow-up. 

When an (1,1)
i  has compact support, by Poincaré duality it is dual to an (2,2)

i  

belonging to H(2,2).  
These are in correspondence with the senior classes. In other words the 
senior classes are in one-to-one correspondence with the compact 
components of the exceptional divisor. 
 We have the 2-forms (1,1)

i  defined by the generalized Kronheimer 
construction and in one-to-one correspondence with the irreps of . What is 

their precise relation with the (1,1)
i  and the divisors Di  that are in one-to-one 

correspondence with the conjugacy classes? This pairing between irreps and 
conjugacy classes is of the outmost interest in Physics. 



Let us review the Physics section of our 
stage: Gauge/Gravity correspondence and 
branes 



The AdS5/CFT4 scenario and some 

history: 1°   

Base of 
the cone 

metric cone 

D=4 Gauge  
Theory 

The fundamental issue is as 
follows. 
Let us consider D3-brane 
solutions of D=10 type IIB 
SUGRA. We have a gauge 
theory on the D=4 world 
volume. 
What can we learn on  
this gauge theory, from the 
geometry of the transverse 
cone? 

Essentially everything is fixed by the cone 
geometry and there is a beautiful 
correspondence with the mathem. theory of 
singularity resolutions. 
 



The AdS5/CFT4 scenario and some 

history: 2°  
The classical situation studied years  ago 
corresponds to the case where the 
transverse cone is the metric cone on a 
Sasakian manifold M5 

The Sasakian 
metric 



D3-brane solution of D=10 IIB SUGRA 
The  metric in D=10 

The 5-form 

The harmonic function in d=6 

where 

and define 

Ricci flat metric on the cone M6  



More precisely 
Let us consider the harmonic function as a map 

This introduces a foliation into a one-parameter family of 7-manifolds 

In order to have the possibility of residual supersymmetries we are interested in 
cases where M6 is actually a Ricci-flat Kaehler  3-fold K3 

Projection  Inclusion into a higher 
dimensional algebraic variety 



The N=4 case with no singularity  

The near horizon limit produces the standard solution of D=11 SUGRA 

This leads to  the isometry group  SU(2,2|4). The Kaluza Klein states are 
organized into short supermultiplets of SU(2,2|4)   



The singular orbifold cases 
Using the Hopf fibration of the 5-sphere 

We have 

We distinguish two cases 

Where   is a finite subgroup of SU(3) with a linear holomorphic action on C
3 



Two cases  

•  A)  
 

 
 
HyperKaehler quotient, N=2 susy in d=4 (McKay corr.) 

 
• B) 
 

 
Kaehler quotient, N=1 susy in d=4  

Resolution of Kleinian  
singularities à la Kronheimer 

Generalized  Kronheimer construction 
and McKay correspondence. 



The map 

Geometry Gauge Theory 

• S =Hom(Q£ R,R) linear data,   dimC(S) =3 
|| 

 

• G =quiver group (see later).  F is the 
maximal compact subgroup thereof. 

 

• The dimension is dim F = || -1 
 

• The moment map  : S ! F
* 

defines || -1 functions PI(q) that enter  

the Kaehler quotient construction 
 

• one has to lift to level I>0 the moment maps 
associated with the center  

 

• One needs a quadratic constraint pÆ p = 0 
that cuts a locus V||+2 of dimension ||+2: 

 

• The Kaeher quotient of V|+2|  with respect 
to F  is the minimal crepant  resolution M 
! C3/ 

  

• S = Kaehler manifold of the Wess-Zumino 
multiplets (flat). 

 

• F   is the gauge group of the gauge theory 

 

• The dimension is dim F = || -1 

 

• The functions PI(q) define the D terms and 

enter the formula for the scalar potential  

 

• The level parameters I  are the Fayet 
Iliopoulos parameters  

 

• The equation pÆ p=0 defines a universal 

cubic superpotential W   

 

• The smooth manifold M is the space of 
vacua of the gauge theory 

 

 

 

 

 

 

 



The final form of the scalar potential 

The manifold of extrema of the scalar potential coincides with the minimal crepant 

resolution of the singularity  C3/ according with the generalized Kronheimer 
construction based on the generalized McKay correspondence.   
Indeed since the potential is a sum of squares the extrema are defined  by  

pÆ p =0 

Furthermore gauge invariance implies that we have to consider only 
orbits of the gauge group and this completes the Kaehler quotient 
procedure.  



The diagram of the smooth resolution 

in case A) 

qK  is the Kaehler quotient with respect to the gauge group. 

Altogether we have a HyperKaehler quotient 

It is convenient to split the HK quotient into two steps in order to 

compare with the case C3/ 



The diagram of the smooth resolution 

in case B) 

The intermediate step, just as in case A) is a Kaehler quotient, yet the starting point 
variety  V||+2 has a different definition.  From the physical viewpoint we have N=1 
rather than N=2 susy and the superpotential is not defined by the holomorphic 
moment maps, mathematically this corresponds to the fixed equation pÆ p = 0 

that amounts to identifying V||+2 with a certain orbit with respect to the quiver 
group G, actually the compactification of the gauge group F: 

We see later what the locus  L is. 



pÆ p =0 

equation 
Kaehler 
quotient 

Blowup 

= 

A visual scheme 



The McKay correspondence for   

In finite group theory we have the decomposition of any rep. D into irreps D 

Let Q be the defining  rep. of   ½ SU(2) 

Miracolous properties the matrix   

c = 2 – A 
It is the extended Cartan matrix  of  the Lie 

algebras     Ak, Dk+2 , E6, E7, E8 

The isomorphic ADE classification of Kleinian 
groups  and semisimple Lie algebras is known.  
The Coxeter numbers coincide with the 
dimensions of  irreps 



McKay correspondence and the Kronheimer 

construction of ALE manifolds 

Define a space P  of pairs  p= (A,B) of complex || £ || matrices.  Define the action 
of the group  on P 

where R() is the regular representation and Q  the defining representation. 

In intrinsic notation      

Introduce the  invariant subspace of P  

The space S  is a flat Kaehler manifold with complex dimension 2|| which 

encodes (in Physics) the Wess-Zumino multiplets of the CS theory (actually) 
hypermultiplets since susy will be N=2. 



Why the dimension of S is 2||? 

The answer is:  

1. McKay correspondence 
2. Regular representation  
3. Schur’s Lemma 

Actually the space S is a flat HyperKaehler manifold with a triplet of Kaehler 

forms arranged into a quaternion 

This allows to perform a HyperKaehler 
quotient with respect to a suitable 
gauge group F  



The Discreet Charm of the integer r 
The integer r counts  several  distinct things at the same time 

1. The number of non trivial irreps of . 
2. The number of non trivial conjugacy classes of . 

3. The dimension of the center z[F ] of the gauge Lie algebra. 

4. Hence the number of Fayet Iliopoulos parameters in the CS 
supergauge theory. 

5. As we will see also the number of tautological holomorphic 
bundles on the resolved variety: M       C

n/ (n=2,3) 
6. In the case n=2 (ADE) the rank of the semisimple Lie algebra 

corresponding to .  

The resolved smooth manifold ALE is obtained as the HyperKaeler quotient 
of S by F 

where  



n=3 generalization of the McKay corr. 

and Kronheimer construction STEP 1°  
Next let  ½ SU(n). We have a generalized McKay  correspondence    

vector of irrep dimensions 

generalized 
extended 

Cartan matrix 

fundamental property 

For n=3 we introduce a space P of triplets of ||£ || matrices  



n=3 generalization of the McKay corr. 

and Kronheimer construction STEP 2°  
Similarly we define the invariant subspace 

where the group action is 

Because of the McKay relation we have 
The space S is a flat Kaehler 

manifold of dimension 3||. It 
accomodates the WZ multiplets of 
the N=1  D=4  gauge theory. So 
there are no holomorphic 
moment maps but we can have a 
superpotential W  the vanishing 

of whose derivatives provides 
holomorphic constraints. 



The gauge group and the quiver group 

gauge group 

quiver group 

The gauge group is the maximal compact subgroup of the quiver group, the latter being the 

complexification of the former. The real dimension of the gauge group is ||-1, the complex 
dimension of the quiver group is the same. We have the real moment  map, well known in 
supersymmetric  gauge theories (D-terms) 
 

dual of the gauge Lie algebra 

real moment maps 



n=3 generalization of the McKay corr. 

and Kronheimer construction STEP 3°  

How can we step down from 3|| complex dimensions to 3-dimensions? 
The gauge group  F has ||-1 generators and the corresponding Kaehler quotient  

kills ||-1  complex parameters.  Hence the starting point should be a variety  
with complex dimensions || +2. 

Question: what is the analogue of holomorphic moment map equation? 

Answer:  it  is  

The general solution to this 
constraint is given by a variety 
V||+2 that can be seen as the 
quiver group orbit of a special 
3-dimensional locus 



n=3 generalization of the McKay corr. 

and Kronheimer construction STEP 4°  

The locus L is easily seen to be  3-dimensional and we have 

Hence L describes the 

singular orbifold C3/ 

Introducing the orthogonal decomposition 



Dih3 



PSL(2,7) The second smallest simple 

group |PSL(2,7)|=168 



This complicated Gauge Theory 
has not yet been constructed 
explicitly but the resolved 
manifold was obtained by 
Markushevitch already in 1997 
using blowups of Algebraic 
Geometry without the use of the 
Kronheimer construction 
unknown to him at the time. 

The exceptional compact divisor is 
described by Markushevich but 
not yet appropriately described as 
a toric variety and the Ricci flat 
metric on its line bundle is 
unknown 



The moment map equation 
The solution of the singularity resolution problem is finally reduced to an algebraic 
equation for the coset element 

Such that 

Typically that above is a system of algebraic equations of higher order. In 
few cases one can reduce it to order 4°, 3°  or 2° obtaining solutions by 
radicals. 



The tautological bundles 
From the coset element V we extract a hermitian matrix  

that is the fiber metric on the direct sum 

of  r  tautological bundles  that, by construction,  are holomorphic  vector bundles 

with rank equal to the dimensions ni of the  r  irreps of  : 

Provided we are able to solve the moment map equation we can evaluate the first 
Chern classes of these bundles 



One simple master example 

generated by 3 =1 

Following the generalized Kronheimer construction one arrives at the following 
system of algebraic equations for the entries of the H-matrix (moment map 
equation) 

where 



Z3 diagonal 

The abstract definition of the resolved variety 

A line bundle on the exceptional compact divisor P2  

Fubini Study metric on Excep. Divisor  



Thanks to Cardano & Tartaglia! 
The moment map equation is solvable by radicals! 

We can explicitly calculate the (1,1)
1,2 forms 

Introducing the intersection integral  

We find 



The AMSY symplectic formalism for 
Kaehler Geometry, the issue of Ricci flat 
metrics polytopes and all that…. 



pÆ p =0 

equation 
Kaehler 
quotient 

Replaces Blowup  

= 

A visual scheme 
Typically  no 5-dim 
Sasaki Einstein 
intermediate  
submanifold 



n=3 generalization of the McKay corr. 

and Kronheimer construction STEP 1°  
Next let  ½ SU(n). We have a generalized McKay  correspondence    

vector of irrep dimensions 

generalized 
extended 

Cartan matrix 

fundamental property 

For n=3 we introduce a space P of triplets of ||£ || matrices  



n=3 generalization of the McKay corr. 

and Kronheimer construction STEP 2°  
Similarly we define the invariant subspace 

where the group action is 

Because of the McKay relation we have 
The space S is a flat Kaehler 

manifold of dimension 3||. It 
accomodates the WZ multiplets of 
the N=1  D=4  gauge theory. So 
there are no holomorphic 
moment maps but we can have a 
superpotential W  the vanishing 

of whose derivatives provides 
holomorphic constraints. 



The gauge group and the quiver group 

gauge group 

quiver group 

The gauge group is the maximal compact subgroup of the quiver group, the latter being the 

complexification of the former. The real dimension of the gauge group is ||-1, the complex 
dimension of the quiver group is the same. We have the real moment  map, well known in 
supersymmetric  gauge theories (D-terms) 
 

dual of the gauge Lie algebra 

real moment maps 



n=3 generalization of the McKay corr. 

and Kronheimer construction STEP 3°  

How can we step down from 3|| complex dimensions to 3-dimensions? 
The gauge group  F has ||-1 generators and the corresponding Kaehler quotient  

kills ||-1  complex parameters.  Hence the starting point should be a variety  
with complex dimensions || +2. 

Question: what is the analogue of holomorphic moment map equation? 

Answer:  it  is  

The general solution to this 
constraint is given by a variety 
V||+2 that can be seen as the 
quiver group orbit of a special 
3-dimensional locus 



n=3 generalization of the McKay corr. 

and Kronheimer construction STEP 4°  

The locus L is easily seen to be  3-dimensional and we have 

Hence L describes the 

singular orbifold C3/ 

Introducing the orthogonal decomposition 



In this case a complete study was done. The resolved 
variety         is the total space of the  canonical bundle 
on the second Hirzebruch surface:  



Hirzebruch surfaces 

A theorem in algebraic geometry states that the second Hirzebruch 
surface does not admit any Kaehler Einstein surface. 

Topologically all even degree Hirzebruch  
surfaces are the product of two spheres. 
 

In its complex structure the second Hirz. Surf.  is a P1 - bundle over P1    



Double Fibration The transverse space to the 
brane  M6 is non compact and 
smooth. It is a line bundle 
over a compact  4-manifold 
M4 that is the compact 
exceptional divisor of the 
resolution, namely shrinks 
down to a the fixed point in 
the blowdown map. The 
exceptional divisor is itself a  
fibre-bundle. How general is this 

scheme? 



Conceptual image of the resolved 

manifold 
Sphere fibre F2  

Sphere base of F2 

Complex line fibre  



Predictions from Ito-Reid Theorem 

age-vectors  

junior compact 

junior non compact 

senior 

Poincaré duality 

since we have  
a compact support 
(1,1)-cocycle there 
must be also a 
(2,2)-cocycle 

Here we have a complete illustration. Z4 has 3 non trivial irreps hence there are three 

tautological bundles and three 1,1 closed forms. Yet we expect only two 2-cycles in 
homology since we have only 2 junior classes. In the correspondence line-
bundles / divisors only one compact divisor and one non compact 

one.There is a linear relation between the cohomology classes of the three 1,1 closed 
forms. 



Toric coordinates Four open dense charts 

The toric construction leads 
to derive four dense 
coordinate patches with 
precise transition functions 
from one to the other. 

We use the 
first of these 
open patches 



The model 
The moment map equations 

Fayet Iliopoulos 
parameters  

Kaehler potential of HKLR 



Chamber structure 

Inside the chambers the M6 
is always the canonical 
bundle on F2. On walls and 
edges partial degenerations 
can occur. 



Reduction to the Exceptional Divisor 

In the limit   -> 0  the moment map equations reduce to solvable ones 

and the result  is an explicit Kaehler potential for the  Kaehler metric on the 
exceptional divisor  F2  



Choosing a line inside a chamber  

Kaehler potential  of an explicit Kaehler metric on the F2 surface 



AMSY formalism 
Toric invariance   

moments 

Symplectic potential obtained 
from the Legendre transform 

Hessian 
Kaehler 2-form 

The metric 



A family of cohomogeneity one 

Kaehler metrics on 4-dim manifolds 
This is the equivalent  for 
the symplectic potential 
of  the dependence of the 
Kaehler potential only on 

 



The polytope 
The manifold is described  
by a finite region of the 
(u,v) - plane defined by 
the interval in which the 
function FK(v) is positive 
for v positive.  



SU(2)£U(1) isometry 

Against the following transformations  

The object that follows is invariant 

If the Kaehler potential is a 
function only of  , then the 
corresponding Kaehler metric is 
isometric with respect to  
SU(2) £ U(1) 



Inverse Legendre transform 

The entire structure of the metric is codified in 
the function 

If the Kaehler potential is given as a function of the moment map  one can always 
reconstruct the function        , however not always one is able to invert the function 

 and give the momentum        in terms of the invariant  



The notable 
cases in the 
family are the  
Kronheimer   
metric on F2, 
a degenerate 
case that we 
find on the 
walls WP1,1,2 , a 
new family the 
KE metrics, 
recently found 
by  us and 
actually 
discovered to be 
part of a 4 
parameter  
family found  by 
Calabi 50 years 
ago but in 
different 
coordinates  



General structure of the Kaehler potential for 
the distinguished cases of the SU(2)£U(1)   

metric family and the polytope 

The metrics that arise in the quotient  C3/Z4  on the exceptional compact 
divisor     



The Kaehler Einstein metrics 

For these metrics it is not clear,  yet, whether  we can  
derive them from  a McKay quotient C3/  
and from which .  

They are very much interesting because we can use the Calabi 
Ansatz and construct explicitly the Ricci flat metric on their 
canonical bundle. Hence we have the full D3 brane solution! 



What are the KE manifolds 

geometrically? 



Explicit form of the metric at fixed 

moment map v 

The difference between F2 and the KE manifolds is 
simply what happens in the extremal points. For F2 
there is no deficit angle. For KE there is a deficit 
angle and therefore there are two conical 
singularities (different one from the other) 



If  is not 1 we 
have a deficit 
angle and 
therefore  a  
conical 
singularity  



There are three main directions of development 

 Try to implement the Kaehler quotient procedure directly at the level of 
the AMSY formalism in order to clarify the relation between the group  
and the polytopes 

 Explore instances of non abelian    in full detail. 
 Consider deformations of the cubic superpotential and study their 

classification and systematics (I did not alk about that. It is work in 
progress with Massimo Bianchi).  
 
 

Thank you very much for your attention 


