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FIRST LECTURE

From the Kronheimer case C2/T’

To the generalized Kronheimer
construction C3/I"
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Setting the stage

2/) Holography and the Gauge/Gravity Correspondence. This is the idea that a quantum field theory living
on the boundary d.#sr of some multi-dimensional space time, for instance the gauge theory describing
all the non gravitational interactions that lives on the four-dimensional boundary of five-dimensional anti
de Sitter space AdSs; might be "solved” by means of classical geometrical calculations in the bulk .#s7.

%) The breaking of conformal invariance of the gauge theory by the resolution of orbifold singularities.
This is the development within Supergravity and String Theory of the consequences of the following chain
of results piled up in the last four decades:

1. a way to break supersymmetry or other continuous symmetries is that of considering as substratum
of exact solutions of (Super)-Gravity field equations, flat manifolds .#;,; quotiened by the action of
a discrete group I', generically named orbifolds .# ¢4 /T

2. The space . ju /T has singularities in the fixed points for the action of I" on . rlar and there are

relevant operators that can deform the orbifold solution to one on a smooth manifold ;0. that,
via the exceptional divisors introduced by the blowup morphism, develops non trivial homology and
cohomology.

3. The size of such new homology cycles are dimensionful parameters that break conformal invariance
and give rise to more realistic holographic pairs gauge-theory/gravitational solution.



Group Structures

[Tracing back physical theories to group
structures. Thisis the guiding principle, phys-
ical and philosophical that aims at reducing the
Laws of Nature to Symmetry Principles. In its
declination in the context of holography and
orbifolds one would like to develop a robust
conceptual setup in which the dual pairs and

all of their aspects can be traced back to group
structures.




The robust conceptual setup

The robust conceptual setup that provides a
rich play-ground for the theoretical physicist's
aspirations concisely described about was cre-
ated by mathematicians at the end of 1980.s
In particular by Peter Kronheimer in with an
essential input from the genial discoveries of
John McKay. It is the Kronheimer setup for
the resolution of the C2/I singularities where
[ C SU(2). The resolution produces the so
named ALFE-manifolds
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There is a one-to-one map between the field-
content and the interaction structure of a D =
4 N = 1 gauge theory and the generalized
Kronheimer algorithm of solving quotient sin-
gularities C3/I" via a Kahler quotient based on
the McKay correspondence. All items on both
sides of the one-to-one correspondence are com-
pletely determined by the structure of the fi-
nite group I and by its specific embedding into
SU(3).



Generalized Kronheimer
construction

For C3 /T there is a generalized Kronheimer construction of the
resolution which is just taylored to define the building blocks of a

gauge theoryin D=4. This is based on a generalized McKay
correspondence.

In D=4 we obtain an N=1 gauge theory associated with a D3-brane.

Before we inspect the Kronheimer construction in the perspective of
Physics let us summarize some deep mathemtical results on the
cohomolgy of the crepant resolutions of quotient singularities.

A resolution of a singularity X — Y is crepant when the canonical bundle of X is the

3
pull-back of the canonical bundle of Y. Hence if X = (CT Is an orbifold, its canonical

bundle is trivial and such is the canonical bundle of the crepant resolution Y. Hence
Y is a non-compact Calabi-Yau three-fold and admits Ricci flat metrics.



What we learn on cohomology
from our friends mathematicians

Since the years 1990s to the present time there has been a quite
extended activity in the mathematical community of algebraic
geometers on the issue of crepant resolutions Y — C'/I" (n=3 in
particular) and on the McKay correspondence. Some theorems have
been established.

Important contributions have been given by: Y.Ito, M. Reid, A. Craw,
S.S. Roan, D. Markusheuvich, I. Dolgachev, A. Degeratu, T. Walpuski
and others.

The main and for physicists most challenging theorem is due to Ito &
Reid and it is based on the notion of age grading which we briefly
recall in the next slide.



R\
The age grading

Let I' € SU(n) be a finite subgroup. Hence each of its group elements has a linear
action on C»: the Q-representation.
<1
Vyel © ~.z2 =
n

Q(v)
In a finite group every element has a finite order p : y? =Id (p=integer). Hence
Q(y) can be diagonalized and its eigenvalues are r-th roots of the unity. They will
be as follows:

5
(Al,...,)\n)=exp[ﬂai] . p>a; €N 1 =1,...,n
p

1
This introduces age -vectors vV = 5{6&1,@27 ...,an}

that are clearly properties of the entire conjugacy class C of y

]. mn
age(y) = = > a; AGE GRADING
P i=1



|lto Reid theorem

Theorem 4.1 LerY — C3 /T be a crepant I resolution of a Gorenstein 2 singularity. Then we have the following
relation between the de-Rham cohomology groups of the resolved smooth variety Y and the ages of I conjugacy
classes:

dimH* (Y) = # of age k conjugacy classes of T

Furthermore  dim H2¢t! (Y) =0 and the representatives of H2k are actually
(k,k)-forms

The age grading is not an intrinsic property of I', rather of its action on C3

r = dimZ[Fr] center of the Lie Algebra

The many incarnations of the
same integer number r

of moment map

r = # of nontrivial r = # of nontrivial
[" conjugacy classes lL U I["irred. represent.s

)

age grading, @ @ first Chern classes of
exceptional divisors tautological bundles



Terminology and some conclusions

There is a single class of age 0, namely the identity. The classes of age 1 are named
junior classes. The classes of age 2 are named senior classes.

Junior classes are in one-to-one correspondence with a basis of generators of
H®@D, These generators QY can be regarded as the first Chern classes of as
many line-bundles £; and these line bundles correspond to as many divisors 2;.
These are the components of the exceptional divisor 2 created by the blow-up.

When an Q®Y; has compact support, by Poincaré duality it is dual to an Q=-2);
belonging to H®-2),

These are in correspondence with the senior classes. In other words the
senior classes are in one-to-one correspondence with the compact
components of the exceptional divisor.

We have the 2-forms ®®?; defined by the generalized Kronheimer
construction and in one-to-one correspondence with the irreps of I'. What is
their precise relation with the Q(-9; and the divisors 2, that are in one-to-one
correspondence with the conjugacy classes? This pairing between irreps and
conjugacy classes is of the outmost interest in Physics.



The scenario 1n
Physics

Let us review the Physics section of our
stage: Gauge/Gravity correspondence and
branes



The AdS;/CFT, scenario and some
history: 1°
The fundamental issue is as /M 5

follows.

Let us consider D3-brane
solutions of D=10 type IIB Transverse cone D =6
SUGRA. We have a gauge
theory on the D=4 world
volume.

What can we learn on

this gauge theory, from the
geometry of the transverse
cone?

Base of
the cone

C (Ms)

metric cone

Essentially everything is fixed by the cone
geometry and there is a beautiful
correspondence with the mathem. theory of
singularity resolutions.

volume d =4



The AdS;/CFT, scenario and some
history: 2°

The classical situation studied years ago
corresponds to the case where the
transverse cone is the metric cone on a
Sasakian manifold M,

base of the fibration projection S-manifold inclusion metric cone
@4 (L M 5 — ¢ (//[5 )
) VpeBy n'(p)~S ) )
Kihler K> Sasakian Kihler Ricci flat K3

AdS5 X M5
The Sasakian ds?\/% — (dX_A)Q 4 gi dzi®d2j*

metric



D3-brane solution of D=10 IIB SUGRA

The metric in D=10

-1 5)3 )
dstio) = H(y,5)72 (=i dat @ da”) + H(y, §)2 (855 dy® @ dy™)

*
where d8/2\46 = gs E*K dy *® d:lf8 I Ricci flat metric on the cone M I

The 5-form
FHY = a(U+#10U) 5 U =d(H "Volyas)
The harmonic function in d=6

‘EM6 H(y) — O‘ and define H(y) =1

r — 00
r — 0O

1
r(y)?

asymptotic flat limit
near horizon limit



More precisely

Let us consider the harmonic function as a map
iy : Mg — R_|_

This introduces a foliation into a one-parameter family of 7-manifolds
- _ -1 —4
VvreRy ¢ Ms(r) =9 "(1-7r"")C Mg

In order to have the possibility of residual supersymmetries we are interested in
cases where Mg is actually a Ricci-flat Kaehler 3-fold K,

—1
Ko «+— M 2 K3 é) \

l l

Projection Inclusion into a higher
dimensional algebraic variety



The N=4 case with no singularity

cp2 & g5 ot 3 AT 3

The near horizon limit produces the standard solution of D=11 SUGRA

AdSs x S°

This leads to the isometry group SU(2,2|4). The Kaluza Klein states are
organized into short supermultiplets of SU(2,2|4)



The singular orbifold cases

Using the Hopf fibration of the 5-sphere

. S° — CP?
Vy € CP? : 7 1(y) ~ St

CIP’Q - S° Cone C?’ A="7
— = — — — [
[ [ [

Where T is a finite subgroup of SU(3) with a linear holomorphic action on C>

We distinguish two cases



Two cases

- A) T CSU(2) cSU(2)®U(1) C SU(3)

Resolution of Kleinian g ~ C x EQ M
singularities a la Kronheimer r r C

HyperKaehler quotient, N=2 susy in d=4 (McKay corr.)

Generalized Kronheimer construction
and McKay correspondence.

Kaehler quotient, N=1 susy in d=4



The map

Geometry Gauge Theory
g lsr |=HomF(Q>< R,R) linear data, dim¢(Sp) =3 « S = Kaehler manifold of the Wess-Zumino
r

Gr =quiver group (see later). F isthe
maximal compact subgroup thereof.

The dimension is dim F = |T'| -1

The moment map p : Sy — F*
defines |I'| -1 functions 7~(q) that enter
the Kaehler quotient construction

one has to lift to level {;>0 the moment maps
associated with the center

One needs a quadratic constraint pA p = 0
that cuts a locus V - ,, of dimension |T'|+2:

The Kaeher quotient of V-, ,, with respect
to Fy. is the minimal crepant resolution M,
— C3/T

multiplets (flat).
F is the gauge group of the gauge theory
The dimension is dim F = |T'| -1

The functions #(q) define the D terms and
enter the formula for the scalar potential

The level parameters (; are the Fayet
Iliopoulos parameters

The equation pA p=0 defines a universal
cubic superpotential Wy

The smooth manifold M, is the space of
vacua of the gauge theory




The final form of the scalar potential

_ 1 I
V(z3) = ¢ (aiwaj*w g7 + m"\*- (7?/\ — (7 Gf\) (Pz — ¢ @i%))
_ 1 5
m">(z,2) = o) AR ki kn 95+

The manifold of extrema of the scalar potential coincides with the minimal crepant
resolution of the singularity C3/I" according with the generalized Kronheimer
construction based on the generalized McKay correspondence.

Indeed since the potential is a sum of squares the extrema are defined by

;W O <¢um) pAp=0
Pn = (1€

Furthermore gauge invariance implies that we have to consider only
orbits of the gauge group and this completes the Kaehler quotient
procedure.



The diagram of the smooth resolution
in case A)

1 A
Ms = cxALEr ¥ CxVip £ oxc

A
The map J; denotes the inclusion map of the
variety Viryq in €21

QK : V||—|_|_1 — V||—|_|_1 //K.F||—|_1 ~ ALEr

gK is the Kaehler quotient with respect to the gauge group.
Altogether we have a HyperKaehler quotient

[ALEI' = C' ) A ry—1J

It is convenient to split the HK quotient into two steps in order to
compare with the case C3/I”




The diagram of the smooth resolution
in case B)

1 A
M5 < Yr (g V||—|+2 J)D C3|r|

The intermediate step, just as in case A) is a Kaehler quotient, yet the starting point
variety V., has a different definition. From the physical viewpoint we have N=1
rather than N=2 susy and the superpotential is not defined by the holomorphic
moment maps, mathematically this corresponds to the fixed equation pAp =0
that amounts to identifying V - ,, with a certain orbit with respect to the quiver
group G, actually the compactification of the gauge group Fr..

Dr — Orbltgr (Lr)

Vir|42

We see later what the locus L is.



A visual scheme

m

equation

Kaehler

c3Ir

85
metric cone on ? —



2
The McKay correspondence for C

-

In finite group theory we have the decomposition of any rep. D into irreps D,

Let Q be the defining rep. of I' C SU(2) A
- T N (P @ Dy
p— r \ D
QQ® Dy >, Auv Dy 0y = —Zgzx( VO
g =0 P
The isomorphic ADE classification of Kleinian MiraCOIOUS properties the matrix
groups I' and semisimple Lie algebras is known. = 25

The Coxeter numbers coincide with the

It 1s the extende(il Cartan matrix of the Lie
dimensions of I irreps

algebras Ay, Dy, , Eg, E, Eg
1
D2 Ee=7 %

. . F1=6 2
[ Ay >3_8-_5< TS99 ﬁﬁin,\.
TS 995




McKay correspondence and the Kronheimer
construction of ALE manifolds

Define a space 2 of pairs p= (A,B) of complex |I"| x |I'| matrices. Define the action
of the groupI"' on 2

| A R(y) AR(y™1)
vyelb (B) — Q’Y(Rh)BR(rl))

where R(y) is the regular representation and £, the defining representation.
In intrinsic notation

P ~ Hom (R, Q® R)
Introduce the I' invariant subspace of 2

S={peP/Vyel,v-p=p} = Homr (R, Q2 ® R)

The space_< is a flat Kaehler manifold with complex dimension 2|I"| which
encodes (in Physics) the Wess-Zumino multiplets of the CS theory (actually)
hypermultiplets since susy will be N=2.



1. McKay correspondence
The answer is: 2. Regular representation
3. Schur’s Lemma

S = 69 Ay pHom(C™, (C”V)

dimg [Homr(R QR R)] = 2|F

Actually the space_< is a flat HyperKaehler manifold with a triplet of Kaehler

forms arranged into a quaternion iK iQ
c | © = Tr(dp'Adp) = | . \
i —iK |
K = —i|Tr(aa"rda)+Tr(dB ndB)| = ig,5dg* A dg?
, _
ds” = 8op dg” ® qu This allows to perform a HyperKaehler

Q — 2Tr(dAAdB) = Qupd g% N d qﬁ quotient with respect to a suitable
gauge group £



The Discreet Charm of the integer r

The integer r counts several distinct things at the same time

The number of non trivial irreps of I'.

The number of non trivial conjugacy classes of I'.

The dimension of the center z[F - ] of the gauge Lie algebra.
Hence the number of Fayet Iliopoulos parameters in the CS
supergauge theory.

As we will see also the number of tautological holomorphic
bundles on the resolved variety: M, — C*/T" (n=2,3)

6. In the case n=2 (ADE) the rank of the semisimple Lie algebra
corresponding to I'.

el

4

The resolved smooth manifold ALE is obtained as the HyperKaeler quotient

of S by Fr 1,7
Me=p Q) )] Fr
wee ¢ € R3®3[Fr]*



n=3 generalization of the McKay corr.
and Kronheimer construction STEP 1°

Next letI' ¢ SU(n). We have a generalized McKay correspondence

r4+1 _ generalized
QR D; = @ Af,;j Dj C’L] — N 670 — A’LJ extended
=1

Cartan matrix
n = {17 ni,..., n’l‘} vector of irrep dimensions
(_3 B ] O Jundamental property

For n=3 we introduce a space P of triplets of || x |I'| matrices

A
pEPr = HOM(R,OQQ®R) = p = (B)
C



n=3 generalization of the McKay corr.
and Kronheimer construction STEP 2°

Similarly we define the invariant subspace
Sr = HOFﬂr(R,Q@R) = {p - PF/V’Y c I—,fy-p=p}

where the group action is R(yY) AR(y~1)
Vvyel: ~v-p=9() | R(Y)BR(H1)
R(v)CR(y™ 1)

The space_sSris a flat Kaehler
. o n: —~n.:\ manifold of dimension 3|I. It
SI_ — @ Az, 7 Hom (C ‘ C" ) accomodates the WZ multiplets of

Because of the McKay relation we have

1,79 the N=1 D=4 gauge theory. So
‘ there are no holomorphic
moment maps but we can have a
dime S = 3 Z 7,%2 = 3| superpotenti.al/({ the vanl:shing
- of whose derivatives provides

holomorphic constraints.



The gauge group and the quiver group

; \
Fr = ® U(nﬂ) ﬂ SU(“_D gauge group
p=0

gr — ® GL(nu,C) ﬂ SL(“_LC) quiver group
\ p=0 _/

The gauge group is the maximal compact subgroup of the quiver group, the latter being the
complexification of the former. The real dimension of the gauge group is |I'|-1, the complex

dimension of the quiver group is the same. We have the real moment map, well known in
supersymmetric gauge theories (D-terms)

/_,L S |— —> IFF dual of the gauge Lie algebra

real moment maps

u) = —i([4,AN+([B,B1N) Ba = Tr(u) fa)




n=3 generalization of the McKay corr.
and Kronheimer construction STEP 3°

How can we step down from 3|I"| complex dimensions to 3-dimensions?
The gauge group £ has |I'|-1 generators and the corresponding Kaehler quotient

kills |[I'|-1 complex parameters. Hence the starting point should be a variety
with complex dimensions |[I"| +2.

Question: what is the analogue of holomorphic moment map equation?
Answer: it is pAp =0

6@' 9 kp Y l The general solution to this
] constraint is given by a variety
@ V|r|+» that can be seen as the
quiver group orbit of a special

0 = [A, B] = [B,C] = [C, A] 3-dimensional locus

V“—H_Q = Dr — Orbltgr (Lr)

O




n=3 generalization of the McKay corr.
and Kronheimer construction STEP 4°

Co

The locus L is easily seen to be 3-dimensional and we have

—1 Hence L describes the
H (O ) Orb 'tj:r (L r ) singular orbifold C3/T

Introducing the orthogonal decomposition
Gr = FroKr
[Fr,Fr] € Fr  [Fr, K] CKr ;o [Kr, Kr] C Fr

Dr = Orbitg_ (exp [Kr] - L) )
. B (Z)=0 if f1¢3
L) J 5 = {ZE exp [Kr] - L || M(z) = ¢y if fﬁ €3 }

Ag
Sr DO L = {( BO) € Sr | Ag, Bg,Cp diagonal in natural basis of R}

=



Field | Up(1) x Uy(1) x U2(2) | #of components
Do, (1,1,1) 1
D (1,1,1) 1
Do (1,1,2) 2
Dy (1,1,2) 2
D, (1,1,2) 2
D, (1,1,2) 2
[P (1,1,4) 4
cb’z,z (1,1,4) 4

1. age=0 ; 1{0,0,0}

2. age = 1 ., 3{1,1,0}
3.age=1 ;  3{0,2,1}

W0 =1, htt =2, h*? =0,

—_
oo




PSL(2,7) The second smallest simple
group |PSL(2,7)|=168
PSL(2,7) = (R?S,T | R = S® =77 = RST = (TSR)* = e)

Irreps = {8,7,6,3,3}

Conjugacy class of PSL(2,7) |6 | G| C | Es | Ce
R | S |TSR| T | SR
2| 3 4 7T |7
1|1 1 1| 2
21 | 56 | 42 | 24 | 24

representative of the class

order of the elements in the class

age

—_— | =] ®

number of elements in the class

WD (Mepsipn) =4 o WY (Mepsipg) =1



This complicated Gauge Theory
has not yet been constructed
explicitly but the resolved
manifold was obtained by
Markushevitch already in 1997
using blowups of Algebraic
Geometry without the use of the
Kronheimer construction
unknown to him at the time.

The exceptional compact divisor is
described by Markushevich but
not yet appropriately described as
a toric variety and the Ricci flat
metric on its line bundle is
unknown

Figure 6.2: The quiver diagram of the finite group PSL(2,7) c SU(3)

MrpsLat) = L (MypsLiagy) — MppsLa)
Vp€ MppsLpy ® (p) ~C



The moment map equation

The solution of the singularity resolution problem is finally reduced to an algebraic
equation for the coset element

YV =exp[®] ; PeKr

(| H0 0 0 0 \
O .ﬁl@lnl)(nl O :
Y = 0 0 ﬁ2®1n2x‘ng
O
\ 0 0 »67‘@1114-)(114-)
Such that

p(V-Lr) = ¢

Typically that above is a system of algebraic equations of higher order. In
few cases one can reduce it to order 4°, 3° or 2° obtaining solutions by
radicals.



The tautological bundles

From the coset element @ we extract a hermitian matrix

(| $H1 0 . | 0|\ . . . |
0 o o o : that is the fiber metric on the direct sum
T
H = || ¢ [coiee | eennn. U . |
m Ssalol| R=OR
\ O |...... 0 |9 1=1

of r tautological bundles that, by construction, are holomorphic vector bundles
with rank equal to the dimensions n; of the r irreps of I':

Ri — M¢ Vpe M : w t(p) =~ CM

Provided we are able to solve the moment map equation we can evaluate the first
Chern classes of these bundles

w,b-(l’l) = c1(R;) = %galog [Det (9;)]



One simple master example
C3
) -

——— generated by Y = (
1 1
a — vectors = {{0,0, 0}, = {1,1,1}, = {2,2,2}}

Hence we conclude that the Hodge numbers

of the resolved variety should be

O OMm
Om O
m O O

Following the generalized Kronheimer construction one arrives at the following
system of algebraic equations for the entries of the H-matrix (moment map

equation)
“(-14+73) =(-14+713) 3 S o
{ T Tk } — {Cl,g‘g} where > = @; | 2]




Z, diagonal

The abstract definition of the resolved variety
CB

L3

A line bundle on the exceptional compact divisor P2

== (14 [u? 4 [vf?) jw[?

Yy = Op(-3) —

2/3
H (D) = 2(2+1) = (&H+1)" 2k (3,23, k)

—0
}CRflat w—) Iog[l —+ |u|2 -+ |”U|2] 4+ ...
Fubini Study metric on Excep. Divisor ]P)



R\
Thanks to Cardano & Tartaglia!

The moment map equation is solvable by radicals!
We can explicitly calculate the o®V,> forms

- 2
(1’1) . 2 d . . d . . .
Wi o = % (d—ZLog [leg(Z)] dz' Ndzt 4 @Log [Tl,Q(Z)] 2 Z'dz" A dzj)

Introducing the intersection integral
Lopbe = /M wc(bl’l) A\ wlgl’l) /\wzgl’l)

We find

[§1}(},§g:(]} : Jf]l]:%
[;1:{],§QE{]} : j]l]:ﬂ (5, =0,=0) ¢ FH =0
(61>0,6,>0) © HAn=1 ((1>0,6>0) @+ Sy =]



SECOND LECTURE

The AMSY symplectic formalism for

u/2
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. Typically no 5-dim
A visual scheme

Sasaki Einstein
intermediate
/\ submanifold
pAp =0 Kaehler
equation e

= quotient

M
c3Ir] ‘

I Replaces Blowup

S5
metric cone on ?




n=3 generalization of the McKay corr.
and Kronheimer construction STEP 1°

Next letI' ¢ SU(n). We have a generalized McKay correspondence

r4+1 _ generalized
QR D; = @ Af,;j Dj C’L] — N 670 — A’LJ extended
=1

Cartan matrix
n = {17 ni,..., n’l‘} vector of irrep dimensions
(_3 B ] O Jundamental property

For n=3 we introduce a space P of triplets of || x |I'| matrices

A
pEPr = HOM(R,OQQ®R) = p = (B)
C



n=3 generalization of the McKay corr.
and Kronheimer construction STEP 2°

Similarly we define the invariant subspace
Sr = HOFﬂr(R,Q@R) = {p - PF/V’Y c I—,fy-p=p}

where the group action is R(yY) AR(y~1)
Vvyel: ~v-p=9() | R(Y)BR(H1)
R(v)CR(y™ 1)

The space_sSris a flat Kaehler
. o n: —~n.:\ manifold of dimension 3|I. It
SI_ — @ Az, 7 Hom (C ‘ C" ) accomodates the WZ multiplets of

Because of the McKay relation we have

1,79 the N=1 D=4 gauge theory. So
‘ there are no holomorphic
moment maps but we can have a
dime S = 3 Z 7,%2 = 3| superpotenti.al/({ the vanl:shing
- of whose derivatives provides

holomorphic constraints.



The gauge group and the quiver group

; \
Fr = ® U(nﬂ) ﬂ SU(“_D gauge group
p=0

gr — ® GL(nu,C) ﬂ SL(“_LC) quiver group
\ p=0 _/

The gauge group is the maximal compact subgroup of the quiver group, the latter being the
complexification of the former. The real dimension of the gauge group is |I'|-1, the complex

dimension of the quiver group is the same. We have the real moment map, well known in
supersymmetric gauge theories (D-terms)

/_,L S |— —> IFF dual of the gauge Lie algebra

real moment maps

u) = —i([4,AN+([B,B1N) Ba = Tr(u) fa)




n=3 generalization of the McKay corr.
and Kronheimer construction STEP 3°

How can we step down from 3|I"| complex dimensions to 3-dimensions?
The gauge group £ has |I'|-1 generators and the corresponding Kaehler quotient

kills |[I'|-1 complex parameters. Hence the starting point should be a variety
with complex dimensions |[I"| +2.

Question: what is the analogue of holomorphic moment map equation?
Answer: it is pAp =0

6@' 9 kp Y l The general solution to this
] constraint is given by a variety
@ V|r|+» that can be seen as the
quiver group orbit of a special

0 = [A, B] = [B,C] = [C, A] 3-dimensional locus

V“—H_Q = Dr — Orbltgr (Lr)

O




n=3 generalization of the McKay corr.
and Kronheimer construction STEP 4°

Co

The locus L is easily seen to be 3-dimensional and we have

—1 Hence L describes the
H (O ) Orb 'tj:r (L r ) singular orbifold C3/T

Introducing the orthogonal decomposition
Gr = FroKr
[Fr,Fr] € Fr  [Fr, K] CKr ;o [Kr, Kr] C Fr

Dr = Orbitg_ (exp [Kr] - L) )
. B (Z)=0 if f1¢3
L) J 5 = {ZE exp [Kr] - L || M(z) = ¢y if fﬁ €3 }

Ag
Sr DO L = {( BO) € Sr | Ag, Bg,Cp diagonal in natural basis of R}

=



The C3/Z4 model A* = e.

Conj. Class Matrix age-vector | age name
1 00
Id ( 010 ) 2(0,0,0) | 0 | nullclass Dy D,
0 0 1
i 0 0
2(A) 0 i O ) 2(1,1,2) | 1 | junior class
0 0 -1
(-1 0 0
2(A)? 0 -1 0 £(2,2,0) | 1 | junior class
\ 0 0 1 Do D3
[—i 0 0
2(A)? 0 —i 0 $(3,3,2) | 2 | seniorclass
\ 0 0 -1

In this case a complete study was done. The resolved
i 0 0 variety 15 is the total space of the canonical bundle
on the second Hirzebruch surface:

00 —1) yit = tot(K [Fa))



Hirzebruch surfaces

Let (U, V) be the homogeneous complex coordinates of a P! projective space and (X,Y. Z) the homo-
geneous complex coordinates of a P? projective space.

Definition 5.1. The n-th Hirzebruch surface T, is defined as the locus cut out in P' x P> by the
following equation of degree n+ 1:

0= P,UV.X.Y.Z) = XU"—=YV"

A theorem in algebraic geometry states that the second Hirzebruch
surface does not admit any Kaehler Einstein surface.

Topologically all even degree Hirzebruch IF 82 82
surfaces are the product of two spheres. on ™ X

In its complex structure the second Hirz. Surf. is a P! - bundle over P!

Fp = Py, ; VpeP; = '(p) =Py



: : The transverse space to the
DOUble F] brat]on brane M, is non compact and
smooth. It is a line bundle
over a compact g4-manifold
Z _ hat is th t
Y ~ M = tot (K[ A M, that s the compac
3] 6 ( [ B] ) exceptional divisor of the
resolution, namely shrinks
"2 I 2 down to a the fixed point in
P! ~§2 dow P
Mo — Mp —> the blowdown map. The
. . exceptional divisor is itself a
How general is this fibre-bundle.

scheme?



Conceptual image of the resolved

manifold
—> Sphere fibre F,

-------- > Sphere base of F,

| _-7 Complex line fibre

of tot [K (Fo)]




Predictions from lto-Reid Theorem

age-vectors

l {1 1 2} junior compact
4 ? Y

C1 —
Poincaré duality
cHo = — {2 , 2, O} junior non compact
4 since we have
1 a compact support
C3 = — {3, 3, 2} senior (1,1)-cocycle there
4 must be also a

(2,2)-cocycle

Here we have a complete illustration. Z, has 3 non trivial irreps hence there are three
tautological bundles and three o' closed forms. Yet we expect only two 2-cycles in
homology since we have only 2 junior classes. In the correspondence line-
bundles / divisors only one compact divisor and one non compact
one.There is a linear relation between the cohomology classes of the three ! closed
forms.



TO I‘l C COO I‘d ] N ateS Four open dense charts

2
{ u, v, W}l — { o Y : Z2 } The toric construction leads
Y Z2 5 to derive four dense
{u, V, W}2 = { % : x? y < } coordinate patches with
4 precise transition functions
{u, V, W}3 — { % : x% , X } from one to the other.
— X - Z
{M, v, W}4 — { y Y ) )7 }
We use the
[ Chart X5, x = u\/vy/w , y—=>vww | 2= w ] first of these
h
Chart X5, x —=\/Vvw/w , y—ou/vyw , 729w open patches

Chart Xg; x — /W
Chart X5, X — usy/v

. Y= uyw . 2 VW

, Y=Y VAL



Za bd C3 Fayet Iliopoulos

The mOdel }/[3] 7 Z4 parameters

The moment map equations

[ (X)) (U)X [ -t )

(-0 (-3

X5+ Xo—X 1 Xz ( X7+X .

i e B
X2—1) (U(X?+X3) +EX, B

\ — )\ ST

r= IwP(u P12 v o U= \/[wp

Kaehler potential of HKLR

Hukir = + G log (X7)
U(X3+1)(X2+X3)+2 (X + X+ X1 X3 (X7 +X3))
X1X2X3

Ho =




S
X

XXX
OO0
Awwxx‘..
. & o (XX)

&%
ANy

A

Inside the chambers the M

ical

bundle on F,. On walls and

Iways the canoni

1sa

edges partial degenerations

can occur.



Reduction to the Exceptional Divisor

0]
o= (1+1uP) VP A=Wl 5 o=lv| ; 6=YC

A A
Xl—}»TH/E . X0 = A'D Xg%Tg\/E

In the limitA -> 0 the moment map equations reduce to solvable ones

Ti (($3—§1) o2l + T3V®) — o T +0T7 + T T (—V@)
o, (6B —((— L+ G)NTs) — T3 (TP 4+ T3) V& =
0 (~&LBBTN +ohy/E +T7 +17)

and the result is an explicit Kaehler potential for the Kaehler metric on the
exceptional divisor F,



Choosing a line inside a chamber

§1=§3=S>0 ; §2=S(2-|-05) o> 0

A (O) = %(\/a2+6aw+m(w+8)+3a—w+4)

\/a2+6aw—|—w2+8&1+3a+&?—|—4)

+2(a+1)10g( 202 + 60+ 4

\ 02 +600+@(T+8)+o+O
(a+2)VE

V2

—2alog

Kaehler potential of an explicit Kaehler metric on the F, surface



N —
AMSY formalism

'jg/(lzl I? X |ZH|)3 where z7; =

H = a.x; ¥ moments

exf+.i®;

G(u-!') — in“'f - ‘%/(lzllﬂ & IZHI)

Toric invariance

Symplectic potential obtained
from the Legendre transform

)2 Hessian Kaehler 2-form
1
Gjj = a‘ufa‘uiG(‘”) K — Zd‘u"'/\d(az-
i=1
( . |
1 The metric
ds; Ssymp = Gudﬁzd‘uj + G dO®' de/
. )




A family of cohomogeneity one
Kaehler metrics on 4-dim manifolds

This is the equivalent for

G.u, = Go(u,0) + Z(v) the symplectic potential

y 1 1 of the dependence of the

Go (u,0) = (u — E) log(20 —u) + Eulog(u) — 5V log(v) Kaehler potential only on
©
dp?
2 — 2 2cin? 2
ds3q, = F00) + FK(0) [dé(1 — cos ) + dr]° + n\(dgb sin Ve + do )
S2 metric
FH(v) 20 — (1 0) v
— u — COS
209" (0) + 1



R\
The polytope

The manifold is described
u/2

by a finite region of the
(u,v) - plane defined by
the interval in which the
function FK(v) is positive
for v positive.

L
OUmin Umax



R\
SU(2)xU(1) isometry

Against the following transformations

b
ifg = (a d) € SU(2) then g(u,v)= (fﬁiﬁ; v (cu—kdf)
c

ifg = exp(if) € U(l) then g(u,v)=(u, exp(if;)v).

The object that follows is invariant

If the Kaehler potential is a
function only of @ , then the
corresponding Kaehler metric is

isometric with respect to
SU(2) x U(1)

o= (1+|ul?) |v]

'I/}




Inverse Legendre transform

]Cozivuu—l‘CUUU_GMB(U,U)
a’:uzauGMB(u,U) . .GL‘UZC%GMB(u,U)
Ty = %(Iog (w) —log (20 —u)) ; a2, =D (v) +log (20 —u) — % log (v) +%

The entire structure of the metric is codified in
the function D(v)

w = 2 (v) = 4v expl[QGUD (b) + 1]
Ko = b (D’ (v) 2) D (v)

If the Kaehler potential is given as a function of the moment map one can always
reconstruct the function p(v) however not always one is able to invert the function
Q and give the momentum p in terms of the invariant @




The notable
cases in the
family are the
Kronheimer
metricon F,,

a degenerate
case that we
find on the
walls WP, ., ,a
new family the
KE metrics,
recently found
by us and
actually
discovered to be
part of a 4
parameter
family found by
Calabi 50 years
ago but in
different
coordinates

(102402 —81a?)(320—9(3a+4))

ﬁfﬁﬁo{u] ~ 16(81a+102407—576(3c+4)0) Omin = 37 | Umax =

>(3a+4) | >0
FH " (0) = 2o omin =0 | omar = | =0
FH () = —LHEE 1600 40* 208 Omin = A} | Opax = A | 0 < A] < A
2K (o) — (el izsn) omin = 21 | O = 22 | 0< 20 <

B=9=0

FHEE(v) = 10 Omin =0 | Omax = A2 | 22>0
FH () =0 Opmin = 0 | Oppax = o
ﬁf}fﬁ[ﬂ] _ (a—v) (b—v) (a*(3b—v)+a(b*+4bo+ 30" )+bo(b+v) ) O = a | Oy = b b>a>0

v(a+3a~b—3ab’—b")




General structure of the Kaehler potential for
the distinguished cases of the SU(2)xU(1)

metric family and the polytope

4

4
K () = (é + ko +Zk5) b+ ) kid;ilog[v—Aj]
=1 i=1

1=

The metrics that arise in the quotient C3/Z, on the exceptional compact
divisor

;LG = ( ;Ll — —%—g 12 — %_(21 13 — 9(4+3ax) M

32

arbirary

;I;l‘--
o=

I

|
2| —
?;‘1--
f—

I
2| —
;I;l‘--
]

I
b=
?;‘1--
s

I
2| —
;I;l‘--
.

I
o




The Kaehler Einstein metrics

Ao = 0 A4 = a Ay = D Ay = % Ay = arbirary

2 2 2 2 2 2
. __ a+ab+b . ___a“4ab+b _ a“+ab-+b* _
kl o a+ab—2b2 kz o —2a’+ab+b? k3 2a2+5ab+2b2 k4 0

P —

For these metrics it is not clear, yet, whether we can
derive them from a McKay quotient C3/T°
and from which T.

They are very much interesting because we can use the Calabi

Ansatz and construct explicitly the Ricci flat metric on their
canonical bundle. Hence we have the full D3 brane solution!




What are the KE manifolds
geometrically?

O

P

The two real manifolds defined by the restriction to the dense chart u, v, ¢, 7, of the surface [F, and of the manifold
M, ;BKE are fully analogous. Cutting the compact four manifold into v = const slices we always obtain the same
result, namely a three manifold .#3 with the structure of a circle fibration on S?:

My D My 5 S* ; VpeSt nal(p)~S!



Explicit form of the metric at fixed
moment map v

ds’y, = v (d¢*sin® 0 +d0%) + FH (v)[do (1 —cosB) +dt]”

The fixed parameter v plays the role of the squared radius of the sphere S? while \/.#.# (v) weights the con-

tribution of the circle fibre defined over each point p € S?. At the endpoints of the intervals .# 2 (0,,;,) =
F K (Omax) = 0 the fibre shrinks to zero.

The difference between F, and the KE manifolds is
simply what happens in the extremal points. For F,
there is no deficit angle. For KE there is a deficit
angle and therefore there are two conical
singularities (different one from the other)



FH(0)=FH (A)(o—A)+O((b— 1))

Ar—A1) (A1 424 Al—22) (241 +A
KE L FH (M) = i%+ll)2‘£+litxzz) L FH (k) = if+ﬁ+ﬂﬁzz)’
F; Kronheimer  : F gk, (35) =2 s FH ko (W) = -2

ds* = dr’* + B> r* d7? Y pranot 2 ibe

have a deficit
angle and
b—A .Zx'(\)| therefore a
a 2\/9%’(1) = conical

singularity



Conclusion

There are three main directions of development

O Try to implement the Kaehler quotient procedure directly at the level of

the AMSY formalism in order to clarify the relation between the group I
and the polytopes

O Explore instances of non abelian T" in full detail.

O Consider deformations of the cubic superpotential and study their
classification and systematics (I did not alk about that. It is work in
progress with Massimo Bianchi).

Thank you very much for your attention



