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Newtonian Gravity

Two bodies of mass M and m at a distance R
attract each other with a force

mM
F=—-G 722

where G is Newton’s constant

G = (6, 67259 + 0.00085) - 10~ m° _ :Pianeta j\"elocité di fuga
| ) kg - s ;Mercuri();§4.435 km/s
From this formula we work out the escape velocity | Venere 1104 km/s
(namely the minimal velocity that a body must have in Terra 11,2 km/s
order to be able to escape from the surface of a star [Marte 15.04 km/s
having radius R and mass M) [Giove [59.5 km/s
2 GM Saturno |35.6 km/s

fU S Urano 5213 km/s
f R INettuno “523.3 km/s

Plutone ||1.3 km/s




Laplace 1796

In his Exposition du System de Monde, Laplace
foresaw the possibility that a celestial body with
radius R might have a mass M so big that the
correspondent escape velocity is larger than the

speed of light:

e
vp = fr > C

In this case the celestial body would be invisible.....

Indeed no light-signal could emerge from it and reach us:

BLACK HOLE.



True astrophysical Black Holes
are not the main concern in this
talk

Supermassive Black Holes (10°
solar masses) are the hidden
engines of Galaxies and
Quasars

Black holes are revealed by the
observation of their accretion
disk and of the flares orthogonal
to the accretion disk plane.

The Black Holes we deal with
are solitons of String
Theory.....! No who knows...?



KARL
SCHWARZSCHILD

®1873 — 1916 (He was born in Frankurt am Mein in a well to
do Jewish family)

®Very young determined orbits of binary stars

®Since 1900 Director of the Astronomical Observatory of
Gottingen (the hottest point of the world for Physics and
Mathematics at that time and in subsequent years)

® Famous scientist and member of the Prussian Academy
of Sciences in 1914 he enrolled as a volounteer in the
German Army and went to war first on the western and then
on the eastern front against Russia.

® At the front in 1916 he wrote two papers. One containing
guantization rules discovered by him independentely from
Sommerfeld. The second containing Schwarzschild solution
of GR. At the front he had learnt GR two months before
reading Einstein’s paper.

®Einstein wrote to Schwarschild : ....I did not expect that
one could formulate the exact solution of the problem in
such a simple way....

®Few months later Schwarschild died from an infection
taken at the front




Fundamental solution: the

Using standard
polar coordinates
plus the time

coordinate T

9 angle

B o
ds® = —guv(x)dxt da:"”?

-1
ds? = — (1 - 27;-) dt? + (1 — %) dR?+ R? (d6° + sin® 0 d¢?)

Is the most general static and spherical symmetric metric




The Schwarzschild metric
has a singularity at the e
Schwarzschild radius

It took about 50 years before its true interpretation was found. Kruskal

==

In the meantime another solution was found

2m 2 2m 2\ 1
2 _ q 2 q 2
dspy = _<1_r+r2> dt +<1_r+r2> dr
+r2 (d0® + sin? d¢?)
P V2q 1 gt A gn Thisis the Reissner Nordstrom
- K72 solution which describes a spherical

object with both mass m and charge ¢



The Reissner
Nordstrom solution

Hans Jacob Reissner was a German aeronautical engineer
with a passion for mathematical physics. He solved Einstein
equations with an electric field in 1916. Later he emigrated to
the USA and was professor in lllinois and in Brooklin

Gunnar Nordstrom was a finnish theoretical physicist who
worked in the Netherlands at Leiden in Ehrenfest’s Institute. In
1918 he solved Eisntein’s equation for a spherical charged
body extending Reissner’s solution for a point charge.

Hans Jacob

Gunnar Nordstrom _

(1881-1923) Reissner (1874-
1967) & wife in
1908

THIS EARLY SOLUTION HAS AN IMPORTANT
PROPERTY which is the tip of an iceberg of

knowledge....when m=q.... EE——)




The first iInstance of extremal
Black Holes

The Reissner Nordstrom metric:

—1
> >
ds2 = —dt2 (1—?”+pi2)+dp2 (1— m-|-q2) + 2 d92

Has two “horizons” at o0+ = m L \/ m2 . q2

There is a true singularity that becomes “naked” if

m < |q] m > |q
It was conjectured a principle /

named COSMIC CENSORSHIp [t Is intimately related to
supersymmetry




Extremal Reissner Nordstrom
solutions

m=l|q , p=r4+m ; 2=z .z
) 2
ds2 = —di2 (1 -|-€) + (1 -|-9) (dr2+r2 dQQ)
T T
= — H (@) dt? + H?(Z) dz - d&
Harmonic function ) — q
armonic H(.TI?) — 1 — —
T T

The largest part of new developments in BH physics is
concerned with generalizations of this solution and with
their deep relations with Supergravity and Superstrings




. 1995-96 Discovery of the attraction mechanism in BPS
BH.s by Ferrara & Kallosh

. 1995-96 Discovery of the statistical interpretation of the
area of the horizon as counting of string microstates by
Strominger.

. 1997-1999 Extensive study of BPS solutions of
supergravity of BH type by means of FIRST ORDER
EQUATIONS, following from preservation of SUSY

. NEW WAVE of interest mid 2000s: also non BPS Black
Holes have the attraction mechanism! Also there we can

find a fake-superpotential!
. D=3 approach and NOW INTEGRABILITY!
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995-1998 Ferrara, Kalic

. .
Strominger v, Qi
SCIENCES CHANDRASEKHAR

PROFESSOR ANDREW STROMINGER

BLACK HOLES:
THE HARMONIC
OSCILLATORS

OF THE 21sT
CENTURY
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The main pioneers of the new R 74 -

Black Hole season drew Strominger
Harvard Professor




| What is a BPS black hole?

* To explain this idea we have to introduce a few basic
facts about the supersymmetry algebra.....




N

Extended SUSY algebra in D=4

{Qaa> @B} = I1(CY")op Pudap — CapZas
(A B=1_ D)

NORMAL FORM of CENTRAL CHARGES
(EZl O e 0 )
ZAB m— ) 23 - Y 0 1
L 0 B . 7,/

A=(al) : ab =12 L] =1. .»



N

Rewriting of the algebra

{Qaflc}:ﬂ Qb,}\ﬁ} T i(OF}’H)aﬁ Pﬁéab(sIJ e C&ﬁeab X ZIJ

Bogomolny Bound

MZ‘ZI‘ VZIalz -y P
Reduced supercharges s i
. - s — 0,
Salla =5 (Qaro Eieap@or)a— | 1 _
s — 5(15ba + i€pg70)
{ C_LI’ SbJ} _EacCIED(:j) (M 2 ZI) 5IJ




N

BPS states = short susy multiplets
(M + 7)) BPS state,;) — 0 )

5 |BPS state,s) =0

Field theory description

0 = éfermions = SUSY rule (bosons, e )

. 11
0 . 1 > nmax

= Y €al
€al



A lesson taught by RN Black Holes

P=p

Areay
47

For extremal Black Holes the area
of the horizon depends only on the charges

2
Areag = | /900 9pp A0 do = 4?1‘p3_ = 47 (m + \/m2 - |q\2)
_|_

— |q‘2 For m=|q|



The N=2 Supergravity Theory

O
L& = \[detg|-2Rlg) — 0367076 hy ()
+IMNs Fp, =17

NN NN

‘|
_ I\ &= VPO
-+ > RQNAZ Fqupae
2 n scalars yielding n complex
scalars z!

"""""

We have gravity
and
n vector multiplets

and n+1 vector fields AA
The matrix N,y encodes together with the metric

e FRewmew




Special Kahler Geometry

O

Let £L — M complex line bundle such that
first Chern class equals Kahler form K. Let
SY — M be a holomorphic flat vector bundle
of rank 2n-+2 with structural group Sp(2n + 2, R)

XA o
= A,>=0,1,...,n symplectic section

Q| Q) iQT(_O]I g>s‘2
K = —8dlog (i(Q2] )
7T

2
]




Special Geometry identities




The matrix N 5

the two (n+ 1) x (n+ 1) vectors




When the special manifold is a symmetric coset ..

O

Up—=4 > L(¢) — (A(d)) | B(¢) ) € Sp(2n+2,R)

f

h
N ()

Un—

1
V2

hf 1

(A(¢) —i1B(f))
1 .
NG (C(¢) —1D(f))

Hp—4

C(¢) | D(¢)

Symplectic embedding




Dimensional Reduction to D=3

THE C-MAP @
D=4 SUGRA with SK,  mssssssssp D=3 c-model on Q,,.,

| _ Space red. / Time red.

dszg = Z [dU = -+ gz'jdzi d2‘7+ J) Cosmol. / Black Holes

e 2V (da + 27CdZ)? ¥ 27V dZT My(z, %) dZ]

,{U’ (L}' U {zz} U Z — {ZA ) ZZ}J 4n + 4 coordinates
2 2n 2n+-2
Gravity scalars From vector fields

M = ImN—1 ImN~1 ReN
* 7 {ReNImN-T|ImMN + ReNImN -1 ReN




When homogeneous symmetric manifolds

General Form of the Lie
U D=3 2 U D=4 algebra decomposition

adj(Up=3) = adj(Up=4) ® adj(SL(2,R)g) ® W2 w)

:Ta’ Tb] p— fabc TC
L, LY] = f*Y, L%,
7%, WH) = (A W,




The simplest example G,

One vector multiplet
adj [a2(2)] = (adi 512, R)E] 1) @ (1, adj [sI(2, R)]) & (2, 4)

- 3 1 -
g-zdzdz = Z (Imz)2 oMz B,uz Poincaré metric
((—v/322 )
Q(z) = %z Symplectic section
\ 1 /
_3z+Z _\/§(z_42-z)
Nas(z) = _%gz_,_z) _zfgg Matrix N,
2272 2273




SUGRA BH.s = one-dimensional Lagrangian model

O

: d
Evolution parameter + ~ 1 f=—f
r dr
L= U2 4 hesd’ &+ e 2 (a+ ZICZ)° + 2 Y 2L M Z
v2 > (O Time-like geodesic = non-extremal Black Hole
L = v2 = O Null-like geodesic = extremal Black Hole
—v2 < O

Space-like geodesic = naked singularity

A Lagrangian model can always be turned into a Hamiltonian one
by means of standard procedures.

SO BLACK-HOLE PROBLEM = DYNAMICAL SYSTEM

FOR SK,, = symmetric coset space THIS DYNAMICAL SYSTEM is
LIOUVILLE INTEGRABLE, always!




OXIDATION 1

The metric @

ds?yy = —eV) (dt+ Agk)?
+e” UM A4 4r2 4 2407 (dh2 + sin? 0 dg?) |

v ' >
where App = 2n CosfOdy Taub-NUT charge
[6—2U (d + ZA Z/\ == ZZ ZZ)]
The electromagnetic charges n= Taub NUT charge
« A
oM = /2 [e"UM4Z - nCZ]M = ( p )
€3
From the o-model viewpoint all these first integrals of the motion
2
v s 2D
it
a2 A(T) — Sinhi(v'r) g =0
T S
2 It ve = > Extremality parameter




OXIDATION 2

O

The electromagnetic field-strenghts

FN = 2p"Nsin0do Ade + ZNdr A (dt + 2n cos 6 dy)

U, a, (I) ~ Z, 7A  parameterize in the G/H case the coset representative

L(P) = exp [—a L_|E_] exp [\/§ZM WM] La(¢) exp [U Lg]

| -

gen. in (2,W) Coset
Element of gfie& in
X >| Ehlers P J
Borel (UD=3) o) ;




The Quartic Invariant

O

The vector of electric and magnetic charges

A 3
Q = (5 ) repr. 3 = 5 of SL(2,R)
>

Quartic symplectic invariant

/| 1 1

3 Fd}-= - -
4 = 3 \/-qul Q1P1 2P2‘11Q2P1 3 \/—P2Q1

1

4

p305




Attraction mechanism & Entropy
Seff = /‘Ceff('r) dar
1 (dU\? dzt d2” | g _
Lepf(T) = 7 (d—,r) + 9 —— ——+€ Vpu(z% Q)
VeH(2,2,Q) = %QtMZI(N’)Q
= —L(zP+1zR) =L (22+2472) o
- o= enira
Z; = ViZ =U;CQ ;, Z'=4g"Z charges
ZJ- = V34 = UJ—(CQ : 7 =giJ—ZJ- of supersym.




Critical Points of the Potential (Ferrara et al)

Q

Vg = 0 = 0 = 22,7 + iCyy, 27 Z*

THREE TYPES of Critical Points

Z: = 0 . 4 & Q ; BPS attractor
Z; # 0, Z =0 ; iCyr2’ ZF 0 non BPS attractor I
Z; # 0, Z # 0 ; iCy2lZ* —22;Z non BPS attractor II

Special Geometry Invariants

N3 = Ciju 229 Z% ; N3 = Cpjuu 20 20" Z¥

1 = Z % y 1o = i ngw

i3 = & (ZN3 + ZN3) , i4 = ig (ZN3 — ZN3)
is = Ciik C%_ Zi Zk zm zh git




Invariants at Fixed Points

O

At BPS attractor points

i1 &7 0 ; =13 =124 =15 =0 Areay = /T4
At BPS attractor points of type I
732750 : ?:1:7:3:7:4:7:5:0 -AreaHz,/—h
At BPS attractor points of type II ‘
i =3i1 ; i3=0 ; d4=-2if ; is= 1243
Identity everywhere

. L., . . 1
Jalp,q) = Z(Zl —ip)2 4+ ig — k-




From coset rep. to Lax equation

} O

2 (7‘) = L~ 1 (7‘) E]L(T) From coset representative

>(r) = L(r) & W(r)
W(r) e I* = UWT(T) +W(r)n =0 decomposition
L(r) e K = nLf'(+)—L(x)n =0
W(’T) — L>(T) — L<(T) R-matrix

%L(T) — [W('T), L(T)] Lax equation




Integration algorithm

O

Initial conditions LO L ( O ) ) LO — L ( O )

Building block C(71) := exp[—2T Lg]

C1.107) ... C1,4(7)
9,;(C) := Det : : : , Do(r):=1.
G b7y --. Gggle)
1 C1 1(7) - Crg-al) (C(T)]L(O) D1
(IL(T)_I),, = Det
5T BO9© | e . ) COLO)




Key property of integration algorithm

O
L(t) = Q(C) Lo (Q(C))*
Q(C) € H™

Hence all LAX evolutions occur within distinct orbits
of H*

Fundamental Problem: classification of
ORBITS




The role of H*

O

H Max. comp. subgroup cosmoL.

Up—3 DO < and
BLACK

H * Different real form of H HOLES

In our simple G,,, model

H* = sl(2,R) @ sl(2, R)




The algebraic structure of Lax

O

For the simplest model ,the Lax operator, is in the representation
(1=3)x(=3)
4 Tlgy YW T
of sl(2,R) x sl(2,R)
L ~ AYA

We can construct invariants and tensors with powers of L




Invariants & Tensors

O

b = %TrLG + % (TrL2)3
hy = %TrLQ

[(j — g) ® (j = g)szmm = @ =7 3)® ([ =1 1)
(1=3)© 0=3) i = G5 206=0)

Quadratic Tensor 7T7%Y = ]j§8 a AB B aiE €ap




Tensors 2

QUADRATIC
BIVECTOR

0=2)20=2),.
=202 0=2) i

O

welT = 1280 M%5 5% p A¥4A APIB

|

= (j=73)€9(j=11)

= (jj2)®(j=10)




Tensors 3

O

Hence we are able to construct
quartic tensors

Il
Tab

Wale Wb ynab
Walz Wb Y sy

ALL TENSORS, QUADRATIC and QUARTIC
are symmetric

Their signatures classify orbits, both regular and nilpotent!




Tensor classification of orbits

O

Orbit || Order | Stand. Stab. Sign. Sign. Sign. Bivect. | Ja Dim.

Nilp. | Repr. subg. T2y Ty Tab wele at [n=0

n=20 | shell
Schw. 00 G 0(2) {+,+.,4} | {+,0,0} | {+.0,0} [ #0O #0 4
Dil. 00 ) O(1,1) {-,—,+} | {-,0,0} | {-,0,0} #0 #0 4
NO1 2 LY 1 0(1,1)xR? | {0,0,0} | {0,0,0} | {0,0,0} 0 0 2
NO2 3 £N% | O(1,1)xR | {0,0,0} | {0,0,0} | {0,0,0} #0 0 3
NO3 3 [NO; R {0,0,¢} | {0,0,0} | {0,0,0} #0 <0 4
NO4 3 LN R {0,0,0} | {0,0,0} | {0,0,e} #0 >0 4
NO5 7 LN¥Cs 0 {0,+,-} | {0,0,-} | {0,+,-}| #O <0 5

How do we get to this classification? The answer is the
following: by choosing a new Cartan subalgebra inside
H* and recalculating the step operators associated
with roots in the new Cartan Weyl basis!




Relation between old and new Cartan Weyl bases
()
New Cartan Weyl generators | their form in the HK-basis
H4 h3
Ho hs
Eq 575 (k3 — 3H1 — H2) }
E» 13 (ky + ko + ka — ko) \
B3 s (—3h1 F hy — ha ¥ 3he)
Ex s (Bhththta — € K
Es : %(_hl—h2+h4+h6) /
Eg 1Bs-—Mi-H) | F
hi = ex+ f2 ki = ex—Jf2
hp = e1—Jf1 ko = e1+ f1
hy = e3+ [3 ka3 = e3— f3
ha = es—+ fa ka = eq— fa
hs = es+ fs ks = es— [5
he = ee— f6 ke = e+ f6




Hence we can easily find nilpotent orbits

O

Every orbit possesses a representative of the form

Oz = 1 E1 + poEo + paEs + pebe

Generic nilpotency 7. Then
imposereduction of nilpotency

Orbit | Abstract Repr. at
name | Repres. Taub-NUT =0
NO1 | n2E2 + neFe £NoL = 2,2R Bp Ry}
NO2 | naEa + psEe LNO> = 4v2Rp B4Ry
NO3 | p2E> + uaEs + peFEe LNOs3 = gglq)l
NOg4 |p1E1 + paEs + peFe LNOas = gii=1)
NOs |u1E1 4 poEs + paEa + peEe | LNOs = 2\/2R3 (E1 + Ep) R3*




The general pattern

O

SmallBH.s

pa = 0

Small BH.s \ ‘
/ Attractors

Broken solutlons ~ small BH.s




EXAMPLE : NON BPS attractor with 2 charges

Initial Lax

Lo =
q\/ K
( gv/E %, — —\g 0 0 o )
g6 pta(kP+36%) _3¢2p V2g€ iy 0 0
VK 23/2 2k3/2 VK
€ 30+ a(=3)-p VI ey 0
\/E 2,3/2 2,,;3/2 \/E
_avE _V/2¢¢ V2g¢ 0 V2¢¢ V2q¢ _aVE
V2 VK VK VK VK V2
0 ay/k 0 V2¢6  —qr®+3¢€2+p 3¢€2+4p _ g€
2 \/}E 2,3/2 2,3/2 \/','{
0 0 _ayk _V2g¢ —3¢&%—p —qr2—3¢€%2—p g€
2 5 2k3/2 2&3/2 \/E
avk g€ g€ _
20 0 vz Ve Vi WK

p,q charges Z(OO) — f + Ik
. 000000000|




/
O O O OOiﬁliﬁ

OOOOO[O
)

w4

O O w O O
OOflOOO
@ o Q0 QO &

67170 O Q0 O

IOOOOOO

Initial coset representative

(€lx)




Solution

O

exp [U(7)] =
3/4

\/ —q3n373—q3n§2'r3+3q2n5/ 272+3q2\/5£27'2+p(q\/7€1'— 1)37'—3qn2'r—3q§21'+n3/ 2

Imz(r) =
%\/ — 3332k (q62+3p) 3430265 2124 3qV/k (462 +p) 72 -3gx7— (3062 +p) r+53/2 (P44 1)
(avAr-1)°

_ 3
- mewhry = (qv/FT — 1)?

~ Areay = 14 = lim — exp[-U ] = Vpg>
At the 4m H=TH oo 72 p[=U(r)]




The attraction mechanism in picture

O

Sl
8-




Liouville Integrability 1°
O
The Poissonian structure
B = i ¢ATA c Borel (92(2)) , L=+ U%Tﬂ
A=1
[TaA, TB] = fau BCTC Borel subalgebra
{F, G} = 86354 8?3 fAB ®C Poisson Bracket
Hguad = costgap 4 dB
Evolution equations a% o4 = {Hgyaq, P}




Liouville Integrability 2°

O

For any Lie algebra element holds true

Kostant Decomposition

BgB™' = Y Ka(g) E* + Z Bt
a>0

_ 1 2 J . . v .
O, B Ol 3 a0 B O‘orth‘ (O‘orth’ O‘orth) =0 M=y

Ko(Lax) = const. of motion

How to find commuting hamiltonians?




The involutive hamiltonians

O

r—1 ;
r+1—i
P (A p1y..- up—1) = Det (ICN(L) — Z w; E%orth — — )\ 1)

=1

For G_{2(2)} Kostant normal form of Lax

Pwp) = A+ &12° + &12°% 4+ fo) — 30 + &1 A p
+R3Apu — A7 u% + Raap?

{80y R} = 0




